

JSS COLLEGE OF ARTS, COMMERCE AND SCIENCE (Autonomous)

Ooty Road, Mysuru-570025

Model Curriculum Structures for Bachelor of Science (Basic and Honours) Programme with Computer Science as Major & Minor Course Model Syllabus for I and II Semesters and Open Elective Courses in Computer Science

As per NATIONAL EDUCATION POLICY - 2020 (NEP-2020)

2021-22 & 2022-23 on words (Revised)

DEPARTMENT OF COMPUTER SCIENCE

The objectives of the B.Sc. - Computer Science Program

- 1. The primary objective of this program is to provide a foundation of computing principles for effectively using information systems and enterprise softwares.
- 2. It helps students analyze the requirements for system programming and exposes students for information systems
- 3. This programme provides students with options to specialize in various software systems.
- 4. To produce outstanding Computer Scientists who can apply the theoretical knowledge into practice in the real world and develop standalone live projects themselves
- 5. To provide opportunity for the study of modern methods of information processing and its applications.
- 6. To develop among students the programming techniques and the problem- solving skills through programming
- 7. To prepare students who wish to go on to further studies in computer science and related subjects.
- 8. To acquaint students to Work effectively with a range of current, standard, Office Productivity software applications.

Program Outcomes:

- 1. **Discipline knowledge:** Acquiring knowledge on basics of Computer Science and ability to apply to design principles in the development of solutions for problems of varying complexity.
- 2. **Problem Solving:** Improved reasoning with strong mathematical ability to Identify, formulate and analyze problems related to computer science and exhibiting a sound knowledge on data structures and algorithms.
- 3. **Design and Development of Solutions:** Ability to design and development of algorithmic solutions to real world problems.
- 4. **Programming a computer:** Exhibiting strong skills required to program a computer for various issues and problems of day-to-day scientific applications.
- 5. **Application Systems Knowledge**: Possessing a minimum knowledge to practice existing computer application software.
- 6. **Communication:** Must have a reasonably good communication knowledge both in oral and writing.
- 7. Ethics on Profession, Environment and Society: Exhibiting professional ethics to maintain the integrality in a working environment and also have concern on societal impacts due to computer-based solutions for problems.
- 8. Lifelong Learning: Should become an independent learner. So, learn to learn ability.
- 9. **Motivation to take up Higher Studies:** Inspiration to continue educations towards advanced studies on Computer Science.

Additional Program Outcomes for B. Sc. (Hons) in Computer Science

The four years Bachelors in Computer Science (Hons) program enables students to attain the following additional attributes besides the afore-mentioned attributes:

- 1. Apply standard Software Engineering practices and strategies in real -time software project development
- 2. Design and develop computer programs/computer-based systems in the areas related to AI, algorithms, networking, web design, cloud computing, IoT and data analytics.
- 3. Acquaint with the contemporary trends in industrial/research settings and thereby innovate novel solutions to existing problems
- 4. The ability to apply the knowledge and understanding noted above to the analysis of a given information handling problem.
- 5. The ability to work independently on a substantial software project and as an effective team member.

IIIA. Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka Bachelor of Science (Basic/Hons.) in subjects with practical with both subjects as majors

Sem.	Discipline Core	Discipline Elective (DSE) / Open	Ability Enhancemen	t Compulsory	Skill Enhancement	Courses (SEC)		Total
	(DSC) (Credits) (L+T+P)	Elective (OE) (Credits) (L+T+P)			Skill based credits (L+T+P)	Value based (Cred (L+T+P)	its)	- Credits
Ι	Discipline A1(4+2)	OE-1 (3)	L1-1(3), L2-1(3)			Physical Education	Health & Wellness	25
	Discipline B1(4+2)		(4 hrs. each)	Environmental Studies (3)		for fitness (1) (0+0+2)	(1) (0+0+2)	
П	Discipline A2(4+2)	OE-2 (3)	L1-2(3), L2-2(3)		SEC-1: Digital	Physical Education	NCC/NSS/R&R(S&G)	25
	Discipline B2(4+2)		(4 hrs. each)		Fluency (2) (1+0+2)	- Yoga (1) (0+0+2)	/Cultural (1) (0+0+2)	
			Exit option	with Certificate (5	0 credits)			
111	Discipline A3(4+2)	OE-3 (3)	L1-3(3), L2-3(3) (4 hrs.	Constitution		Physical Education-	NCC/NSS/R&R(S&G)	25
	Discipline B3(4+2)		each)	of India (3)		Sports (1) (0+0+2)	/Cultural (1) (0+0+2)	
IV	Discipline A4(4+2)	OE-4 (3)	L1-4(3), L2-4(3) (4 hrs.		SEC-2: Artificial	Physical Education	NCC/NSS/R&R(S&G)	25
	Discipline B4(4+2)		each)		Intelligence (2)	-Games (1) (0+0+2)	/Cultural (1) (0+0+2)	
					(1+0+2)			
	1	-	Diploma (100 credits) or	continue the third	d year with both the su	bjects as majors		
V	Discipline A5(3+2), Di				SEC-3: SEC such as			23
	Discipline B5(3+2), Di	scipline B6(3+2)			Cyber Security (2) (1+0+2)			
VI	Discipline A7(3+2),	Discipline A8(3+2)			SEC-4: Professional			24
	Discipline B7(3+2) Dis	cipline B8(3+2)			Communication (2)			
	Internship (2)							
	Exit optio	on with Bachelor of Arts,	B.A./ Bachelor of Science,	B. Sc. Basic Degre	ee (146 credits) or choo	ose one of the Disciplir	nes as Major	
VII	Discipline A/B-9(3+2)		DS-A/B Elective-1(3)					22
	Discipline A/B-10(3+2	2)	DS-A/B Elective-2(3)					
	Discipline A/B-11(3)		Res. Methodology (3)					
VIII	Discipline A/B-12(3+2	2)	DS-A/B Elective-3(3)					20
	Discipline A/B-13(3)		Research Project (6) *					
	Discipline A/B-14(3)							

NEP-2020 Model Syllabus – B.Sc. (Cs M) and B.Sc. (P Cs) 2021-22 onwards

ม	u		a		Но	1rc / 1	Week		redit	.c		Ν	Iaximı	ım Mar	·ks		Enom	
Year	Sem	Combination	Course Code	Title	1100	1157	W CCK	C	-i cuit	<u>م</u>	Th. IA		Pr. IA		Exam		Exam Duration	Total Marks
	•1		Code		L	Т	Р	L	Т	Р	C1	C2	C1	C2	Th.	Pr.	Duration	магкя
		G M	FSA45034	Computer Fundamentals and	4	0	0	4	0	0	20	20	-		60	_	2½ Hours	100
		Cs M	[DSC-1]	Programming in C	4	U	U	4	0	0	20	20		-	00	-	2 72 Hours	100
		P Cs	FSA45035	Computer Fundamentals and	4	0	0	4	0	0	20	20			60	-	2½ Hours	100
		r Cs	[DSC-1]	Programming in C	4	U		4	U	U	20	20	-	-	00	-		100
		Cs M	FSA45034	C Programming Lab	0	0	4	0	0	2	_		10	15*	_	25	3 Hours	50
		CS IVI	[DSC-1L]	C Hogramming Lab	U	U	т	U	U	2		-	10	15	_	23	5 110015	30
		P Cs FSA45035	C Programming Lab	0	0	4	0	0	2	_	_	10	15*	-	25	3 Hours	50	
			[DSC-1L]		U	U	т	U	U	2			10	15	_	23	5 11001 5	30
	I	IBA EG	FHA21031															
Ι		IBA HP	FHA21032	SEC - DIGITAL FLUENCY														
		IBA KG	FHA21033		1	0	1	1	0	2	-	-	10	15*	-	25	1 Hour	50
		IBA HE	FHA21034															
		IBA JP	FHA21035															
				Open Elective (OE) -	3	0	0	3	0	0	20	20	-	_	60	-	2½ Hours	100
			FSA880	Office Automation	5	U	U	3	U	U	20	20	-	-	00	_	2 /2 110013	100
			FSA890	Open Elective (OE) - C	3	0	0	3	0	0	20	20	-	-	60	-	2½ Hours	100
				Programming Concepts	3	U	U	3	U	U	20	20			00		2 /2 110013	100
		Cs M	FSB45034	Data Structures using C	4	0	0	4	0	0	20	20	-	-	60	-	2½ Hours	100
			[DSC-2]	Data Structures using C	•	v	v	-	Ŭ	Ŭ	20	20			00		2 /2 1100115	100
		P Cs	FSB45035	Data Structures using C	4	0	0	4	0	0	20	20	-	-	60	-	2½ Hours	100
	II		[DSC-2]	Data Structures using C	•	Ŭ	•		Ŭ	Ŭ							= /2 mours	100
	••	Cs M	FSB45034	Data structures Lab	0	0	4	0	0	2	-	-	10	15 *	-	25	3 Hours	50
			[DSC-2 L]		-	-	-	-	-									
		P Cs	FSB45035	Data structures Lab	0	0	4	0	0	2	-	-	10	15*	-	25	3 Hours	50
			[DSC-2 L]		-	-		-	-				-	-		-		

			Course	Title	Uo	Hours / Week Credits						Ν	laximu	m Mar	ks		Exam	Total
Year	Sem	Combination	Code	The	по	urs /	VV EEK	Ľ				IA	Pr.			kam	Duration	Marks
X	S				L	Т	Р	L	Т	Р	C1	C2	C1	C2	Th.	Pr.	Duration	1.1.1.1.0
		I BCA	FAB210															
		I B.Sc. PC	FSB21031	SEC - DIGITAL														
		I B.Sc. PM	FSB21032															
		I B.Sc. PE	FSB21033															
		I B.Sc. CsM	FSB21034															
		I B.Sc. PCs	FSB21035															
		I B.Sc. BtZ	FSB21036	FLUENCY		0	2	1	0	1	-	-	10	15*	25	-	3 Hours	50
_		I B.Sc. CBt	FSB21037															
Ι	II	I B.Sc. CZ	FSB21038															
		I B.Sc. BZ	FSB21039															
		I B.Sc. BtBc	FSB21040															
		I B.Sc. MbBt	FSB21041															
		I B.Sc. MbBc	FSB21042															
			FSB880	OE – E Commerce	3	0	0	3	0	0	20	20	-	-	60	-	2½ Hours	100
			FSB890	OE-Web Designing	3	0	0	3	0	0	20	20	-	-	60	-	2½ Hours	100
		Exit option with Certificate (50 credits)																
			FSC45034	Object Oriented	_													
		Cs M	[DSC-3]	Programming in JAVA	4	0	0	4	0	0	20	20	-	-	60	-	2½ Hours	100
			FSC45035	Object Oriented		4 0												
		P Cs	[DSC-3]	Programming in JAVA	4		0	0	4	0	0	0 20	20	-	-	60	-	2½ Hours
			FSC45034															
		Cs M	[DSC-3L]	JAVA Programming Lab	0	0	4	0	0	2	-	-	10	15*	-	25	3 Hours	50
			FSC45035															
		P Cs	[DSC-3L]	JAVA Programming Lab	0	0	4	0	0	2	-	-	10	15*	-	25	3 Hours	50
II		IBA EG	FHC21031		1	0	1	1	0	2	-	-	10	15*	-	25	1 Hours	50
	III	IBA HP	FHC21032	4	1	0	1	1	0	2	-	_	10	15*	-	25	1 Hours	50
		IBA KG	FHC21032	SEC - Artificial Intelligence	1	0	1	1	0	2		_	10	15*	-	25	1 Hours	50
		IBA KO IBA HE	FHC21033		1	0	1	1	0	2	-	-	10	15* 15*	-	25	1 Hours	50
		IBA JP	FHC21034	-		0	1	1	0	2		-	10	15 15*	-	25	1 Hours	50 50
			111021055	OE -Python	1	U	I		U	4	-	-	10	13	-	23		50
			FSC880	Programming Concepts	3	0	0	3	0	0	20	20	-	-	60	-	2½ Hours	100
			FSC890	OE– Fundamentals of Multimedia	3	0	0	3	0	0	20	20	-	-	60	-	2½ Hours	100

			Course	Title	Uo	una /	Week		redit	ła		Ν	laximu	m Mar	ks		Exam	Total
Year	Sem	Combination	Code	1 Iue	по	urs/	WEEK	Ľ				IA	Pr.			kam	Duration	Marks
X	S				L	Т	Р	L	Т	Р	C1	C2	C1	C2	Th.	Pr.	Duration	
		Cs M	FSD45034	Database Management	4	0	0	4	0	0	20	20	_	_	60	_	2½ Hours	100
			[DSC-4]	Systems	-	Ŭ	v	-	Ŭ	Ŭ		20			00		2 /2 110013	100
		P Cs	FSD45035	Database Management	4	0	0	4	0	0	20	20	-		60	_	2½ Hours	100
		1 05	[DSC-4]	Systems		Ŭ	Ŭ	-	Ů	Ŭ	20	20			00		2 /2 Hours	100
		Cs M	FSD45034	DBMS Lab	0	0	4	0	0	2		_	10	15*	_	25	3 Hours	50
			[DSC-4L]		v	Ŭ		v	v	-			10	15		25	5 110015	50
		P Cs	FSD45035	DBMS Lab	0	0	4	0	0	2	-	-	10	15*	_	25	3 Hours	50
			[DSC-4L]		U	U	т	U	U	2			10	15		23	5 110013	50
		I B.Sc. PC	FSD21031														3 Hours	
		I B.Sc. PM	FSD21032								_							
		I B.Sc. PE	FSD21033															
		I B.Sc. CsM	FSD21034	SEC - Artificial Intelligence														
II	IV	I B.Sc. PCs	FSD21035					1		1								
		I B.Sc. BtZ	FSD21036		1	0	2		0			-	10	15*	25			50
		I B.Sc. CBt	FSD21037		Intelligence	T	U	2	1	U	1	-	-	10	15	25	-	3 Hours
		I B.Sc. CZ	FSD21038]														
		I B.Sc. BZ	FSD21039]														
		I B.Sc. BtBc	FSD21040]														
		I B.Sc. MbBt	FSD21041	1														
		I B.Sc. MbBc	FSD21042]														
			FSD880	OE – Cloud Computing	3	0	0	3	0	0	20	20	-	-	60	-	2½ Hours	100
			FSD890	OE- Fundamentals of	3	0	0	3	0	0	20	20	-	-	60	-	2½ Hours	100
		Mobile Application							4.				ļ		•			
			E	xit option with Diploma (100 c	redit	s) or	contin	ue the	thire	a yea	r with	both th	ie subje	ects as	major	S		

Note: 15* is spilt 10 marks for Practical's of C2 + 5 marks for practical Record/Report

Discipline Specific Elective Courses:		
Group 1:	Group-2:	Group-3:
• IoT	 Information and Network Security 	Data Analytics
 Cyber Law and Cyber Security 	Data Compression	 Storage Area Networks
 Web Programming - PHP and MySQL 	Discrete Structures	 Pattern Recognition
 Clouds, Grids, and Clusters 	Opensource Programming	 Digital Image Processing
 Software Testing 	 Multimedia Computing 	Parallel Programming
	• Big Data	 Digital Signal Processing
Open Electives in Computer Science:		
(For BA, BSc, BCom, BSW, BBA, BBM studen	ts studying Core Courses other than Computer	Science/ Computer Applications)
Office Automation	C Programming Concepts	• E-Content Development
 Fundamentals of Multimedia 	 Python Programming Concepts 	• E-Commerce
 Computer Animation 	R Programming	Web Designing
 Accounting Package 	 Multimedia Processing 	Cloud Computing
	• Fundamentals of Mobile Application	

NEP-2020 Model Syllabus for BSc (Basic and Honors), Semesters I and II

Semester: I

Course Code: DSC-1 [FSA450]	Course Title: Computer Fundamentals and Programming in C
Course Credits: 04	Hour of Teaching / Week: 04 Hours
Formative Assessment Marks: 40	Total Contact Hours: 52 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Confidently operate Desktop Computers to carry out computational tasks
- Understand working of Hardware and Software and the importance of operating systems
- Understand programming languages, number systems, peripheral devices, Networking, Multimedia and internet concepts
- Read, understand and trace the execution of programs written in C language
- Write the C code for a given problem
- Perform input and output operations using programs in C
- Write programs that perform operations on arrays

Course Content	Hours
Unit - 1	
 Fundamentals of Computers: Introduction to Computers - Computer Definition, Characteristics of Computers, Evolution and History of Computers, Types of Computers, Basic Organisation of a Digital Computer; Number Systems – different types, conversion from one number system to another; Computer Codes – BCD, Gray Code, ASCII and Unicode; Boolean Algebra – Boolean Operators with Truth Tables; Types of Software – System Software and Utility Software; Computer Languages - Machine Level, Assembly Level & High Level Languages, Translator Programs – Assembler, Interpreter and Compiler; Planning a Computer Program - Algorithm, Flowchart and Pseudo code with Examples. Introduction to C Programming: Over View of C; History and Features of C; Structure of a C Program with Examples; Creating and Executing a C Program; Compilation process in C. 	13
Unit - 2	
 C Programming Basic Concepts: C Character Set; C tokens - keywords, identifiers, constants, and variables; Data types; Declaration & initialization of variables; Symbolic constants. Input and output with C: Formatted I/O functions - <i>printf</i> and <i>scanf</i>, control stings and escape sequences, output specifications with <i>printf</i> functions; Unformatted I/O functions to read and display single character and a string - <i>getchar</i>, <i>putchar</i>, <i>gets</i> and <i>puts</i> functions. C Operators & Expressions: Arithmetic operators; Relational operators; Logical operators; Assignment operators; Increment & Decrement operators; Bitwise operators; Conditional operator; Special operators; Operator Precedence and Associatively; Evaluation of arithmetic expressions; Type conversion. 	13
Unit - 3	
Control Structures: Decision making Statements - <i>Simple if, if_else, nested if_else, else_if ladder,</i> <i>Switch-case, goto, break & continue</i> statements; Looping Statements - Entry controlled and Exit controlled statements, <i>while, do-while, for</i> loops, Nested loops. Arrays: One Dimensional arrays - Declaration, Initialization and Memory representation; Two Dimensional arrays - Declaration, Initialization and Memory representation. Strings: Declaring & Initializing string variables; String handling functions - strlen, strcmp, strcpy <i>and strcat;</i> Character handling functions - <i>toascii, toupper, tolower, isalpha, isnumeric</i> etc.	13

Unit - 4	
Pointers in C: Understanding pointers - Declaring and initializing pointers, accessing	13
address and value of variables using pointers; Pointers and Arrays; Pointer Arithmetic;	
Advantages and disadvantages of using pointers;	
User Defined Functions: Need for user defined functions; Format of C user defined	
functions; Components of user defined functions - return type, name, parameter list,	
function body, return statement and function call; Categories of user defined functions -	
With and without parameters and return type.	
User defined data types: Structures - Structure Definition, Advantages of Structure,	
declaring structure variables, accessing structure members, Structure members	
initialization, comparing structure variables, Array of Structures; Unions - Union	
definition; difference between Structures and Unions.	

Text Books

- 1. Pradeep K. Sinha and Priti Sinha: Computer Fundamentals (Sixth Edition), BPB Publication
- 2. E. Balaguruswamy: Programming in ANSI C (TMH)

References

- 1. Kamthane: Programming with ANSI and TURBO C (Pearson Education)
- 2. V. Rajaraman: Programming in C (PHI EEE)
- 3. S. ByronGottfried: Programming with C (TMH)
- 4. Kernighan & Ritche: The C Programming Language (PHI)
- 5. Yashwant Kanitkar: Let us C
- 6. P.B. Kottur: Programming in C (Sapna Book House)

Course Code: DSC-1L [FSA450]	Course Title: C Programming Lab
Course Credits: 02	Hour of Teaching / Week: 04 Hours
Formative Assessment Marks: 25	Total Contact Hours: 52 Hours
Exam Marks: 25	Exam Duration: 03 Hours

Practice Lab

The following activities be carried out/ discussed in the lab during the initial period of the semester.

- 1. Basic Computer Proficiency a. Familiarization of Computer Hardware Parts
 - b. Basic Computer Operations and Maintenance.
 - c. Do's and Don'ts, Safety Guidelines in Computer Lab

2. Familiarization of Basic Software – Operating System, Word Processors, Internet Browsers, Integrated Development Environment (IDE) with Examples.

3. Type Program Code, Debug and Compile basic programs covering C Programming fundamentals discussed during theory classes.

Programming Lab

Part A:

- 1. Write a C Program to read radius of a circle and to find area and circumference
- 2. Write a C Program to read three numbers and find the biggest of three
- 3. Write a C Program to demonstrate library functions in math.h
- 4. Write a C Program to check for prime
- 5. Write a C Program to generate n primes

6. Write a C Program to read a number, find the sum of the digits, reverse the number and check it for palindrome

7. Write a C Program to read numbers from keyboard continuously till the user presses 999 and to find the sum of only positive numbers

8. Write a C Program to read percentage of marks and to display appropriate message (Demonstration of else-if ladder)

9. Write a C Program to find the roots of quadratic equation (demonstration of switch-case statement)

10. Write a C program to read marks scored by n students and find the average of marks (Demonstration of single dimensional array)

11. Write a C Program to remove Duplicate Element in a single dimensional Array

12. Program to perform addition and subtraction of Matrices

Part B:

1. Write a C Program to find the length of a string without using built in function

2. Write a C Program to demonstrate string functions.

3. Write a C Program to demonstrate pointers in C

4. Write a C Program to check a number for prime by defining *isprime()* function

5. Write a C Program to read, display and to find the trace of a square matrix

6. Write a C Program to read, display and add two m x n matrices using functions

7. Write a C Program to read, display and multiply two m x n matrices using functions

8. Write a C Program to read a string and to find the number of alphabets, digits, vowels, consonants, spaces and special characters.

9. Write a C Program to Reverse a String using Pointer

10. Write a C Program to Swap Two Numbers using Pointers

11. Write a C Program to demonstrate student structure to read & display records of n students.

12. Write a C Program to demonstrate the difference between structure & union.

Note: Student has to execute a minimum of 10 programs in each part to complete the Lab course

Evaluation Scheme for Lab Examination

Assessment Criteria		Marks
Program – 1 from Part A	Flowchart / Algorithm	02
	Writing the Program	05
	Execution and Formatting	03
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	05
	Execution and Formatting	03
Viva Voice based on C Programming		05
Total		25

Semester: II

Course Code: DSC-2 [FSB450]	Course Title: Data Structures using C
Course Credits: 04	Hour of Teaching / Week: 04 Hours
Formative Assessment Marks: 40	Total Contact Hours: 52 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms
- Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs
- Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs
- Demonstrate different methods for traversing trees
- Compare alternative implementations of data structures with respect to performance
- Describe the concept of recursion; give examples of its use
- Discuss the computational efficiency of the principal algorithms for sorting and searching

Course Content	Hours
Unit - 1	
Introduction to data structures: Definition; Types of data structures - Primitive & Non- primitive, Linear and Non-linear; Operations on data structures.	13
Algorithm Specification, Performance Analysis, Performance Measurement	
Recursion: Definition; Types of recursions; Recursion Technique Examples - Fibonacci numbers, GCD, Binomial coefficient Cr, Towers of Hanoi; Comparison between iterative and	
recursive functions.	
Unit - 2 Arrays: Basic Concepts – Definition, Declaration, Initialisation, Operations on arrays; Types of arrays; Arrays as abstract data types (ADT); Representation of Linear Arrays in memory; Traversing linear arrays; Inserting and deleting elements; Sorting – Selection sort, Bubble sort, Quick sort, Selection sort, Insertion sort; Searching - Sequential Search, Binary search; Iterative and Recursive searching; Multidimensional arrays; Representation of multidimensional arrays; Sparse matrices. Dynamic memory allocation: Static & Dynamic memory allocation; Memory allocation and de-allocation functions - <i>malloc, calloc, realloc</i> and <i>free</i> .	13
Unit - 3	10
Linked list: Basic Concepts – Definition and Representation of linked list, Types of linked lists - Singly linked list, Doubly liked list, Header liked list, Circular linked list; Representation of Linked list in Memory; Operations on Singly linked lists – Traversing, Searching, Insertion, Deletion; Memory allocation; Garbage collection. Stacks: Basic Concepts – Definition and Representation of stacks; Operations on stacks; Applications of stacks; Infix, postfix and prefix notations; Conversion from infix to postfix using stack; Evaluation of postfix expression using stack; Application of stack in function calls.	13

Unit - 4

Queues: Basic Concepts – Definition and Representation of queues; Types of queues - Simple
queues, Circular queues, Double ended queues, Priority queues; Operations on Simple
queues;
Trees: Definition; Tree terminologies –node, root node, parent node, ancestors of a node,
siblings, terminal & non-terminal nodes, degree of a node, level, edge, path, depth;
Binary tree: Type of binary trees - strict binary tree, complete binary tree, binary search tree
and heap tree; Array representation of binary tree. Traversal of binary tree; *preorder, inorder*
and *postorder* traversal; Reconstruction of a binary tree when any two of the traversals are
given.13

Text Books

1. Satraj Sahani: Fundamentals of Data Structures

References

- 1. Tanenbaum: Data structures using C (Pearson Education)
- 2. Kamathane: Introduction to Data structures (Pearson Education)
- 3. Y. Kanitkar: Data Structures Using C (BPB)
- 4. Kottur: Data Structure Using C
- 5. Padma Reddy: Data Structure Using C

6. Sudipa Mukherjee: Data Structures using C – 1000 Problems and Solutions (McGraw Hill Education, 2007))

Course Code: DSC-2Lab [FSB 450]	Course Title: Data Structures Lab
Course Credits: 02	Hour of Teaching/Week: 04 Hours
Formative Assessment Marks: 25	Total Contact Hours: 52 Hours
Exam Marks: 25	Exam Duration: 03 Hours

Programming Lab

Part A:

- 1. Write a C Program to find GCD using recursive function
- 2. Write a C Program to display Pascal Triangle using binomial function
- 3. Write a C Program to generate n Fibonacci numbers using recursive function.
- 4. Write a C Program to implement Towers of Hanoi.
- 5. Write a C Program to implement dynamic array, find smallest and largest element of the array.
- 6. Write a C Program to create two files to store even and odd numbers.
- 7. Write a C Program to create a file to store student records.
- 8. Write a C Program to read the names of cities and arrange them alphabetically.
- 9. Write a C Program to sort the given list using selection sort technique.
- 10. Write a C Program to sort the given list using bubble sort technique.

Part B:

- 1. Write a C Program to sort the given list using insertion sort technique.
- 2. Write a C Program to sort the given list using quick sort technique.
- 3. Write a C Program to sort the given list using merge sort technique.
- 4. Write a C Program to search an element using linear search technique.
- 5. Write a C Program to search an element using recursive binary search technique.
- 6. Write a C Program to implement Stack.
- 7. Write a C Program to convert an infix expression to postfix.
- 8. Write a C Program to implement simple queue.
- 9. Write a C Program to implement linear linked list.
- 10. Write a C Program to display traversal of a tree.

Evaluation Scheme for Lab Examination

Assessment Criteria		Marks
Program – 1 from Part A	Flowchart / Algorithm	02
	Writing the Program	05
	Execution and Formatting	03
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	05
	Execution and Formatting	03
Viva Voice based on C Programming		05
Total		25

Skill Enhancement Courses (SEC) for B.A. & B.Sc. & BCA Semester: I / II

Course Code: [FHA210 / FSB210 / [FAB210]

Course Title: SEC **Digital Fluency**

Course Credits: 2

Total Contact Hours: 15 hours of theory and 30 hours of practical's Duration of ESA: Formative Assessment Marks: 50 marks Summative Assessment Marks: 50 marks

Model Syllabus Authors:

Course Outcomes (COs):

At the end of the course the student should be able to:

(Write 3-7 course outcomes. Course outcomes are statements of observable student actions that serve as evidence of knowledge, skills and values acquired in this course)

1. Have an intelligent conversation on the key concepts and applications of Artificial Intelligence (AI), Big Data Analytics (BDA), Internet of Things (IoT), Cloud Computing, and Cybersecurity

2. Develop holistically by learning essential skills such as effective communication, Problemsolving, design thinking, and teamwork

3. Build his/her personal brand as an agile and expansive learner – one who is interested in Horizontal and vertical growth?

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

This mapping needs to be done considering POs of respective programs.

Course Outcomes (COs) / Program Outcomes (POs)

1 2 3 4 5 6 7 8 9 10 11 12

1. Have an intelligent conversation on the key concepts and applications of AI, BDA, IoT,

Cloud Computing, and Cyber security

2. Develop holistically by learning essential skills such as effective communication, problemsolving, design thinking, and teamwork

3. Build his/her personal brand as an agile and expansive learner - one who is interested in horizontal and vertical growth

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

Course Content (Digital 101) Details of topic

Module 1: Emerging Technologies

Overview of Emerging Technologies:

i. Artificial Intelligence, Machine Learning, Deep Learning,

ii. Database Management for Data Science, Big Data Analytics,

iii. Internet of Things (IoT) and Industrial Internet of Things (IIoT)

iv. Cloud computing and its service models & v. Cyber Security and Types of cyber attack

Duration

05 hours

Module 2: Applications of Emerging Technologies

Applications of emerging technologies:

i. Artificial Intelligenceii. Big Data Analyticsiii. Internet of Thingsiv. Cloud Computingv. Cyber Security

Module 3: Building Essential Skills beyond Technology

Importance of the following:

i. Effective Communication Skills

ii. Creative Problem Solving & Critical Thinking

iii. Collaboration and Teamwork Skills

iv. Innovation & Design Thinking

v. Use of tools in enhancing skills

References to learning resources:

1. The learning resources made available fo the course titled "Digital 101" on Future Skills Prime Platform of NASSCOM

05 hours

05 hours

Open Elective Courses offered by the Department of Computer Science

I Semesters

Course Code: Open Elective OE-1 [FSA880]	Course Title: Office Automation
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

- Be familiar various office automation tools.
- Create and format a document.
- Create and analyse data using Excel.
- Create and customize a presentation for a specific topic.

Course Content	Hours
Unit – 1	
Introduction, Block diagram of a computer, Input and output devices, memory and storage devices, Types of software, Introduction to operating system – functions, types of operating system and examples. Introduction to word processing – creating and saving a document, formatting a document – Line spacing, paragraph, Fonts, inserting symbols, header and footer, shape, Tables, Find and replace, Mail merge, saving a document in different formats.	14
Unit – 2	
Introduction to spread sheet – entering different types of data like text, numbers, date, functions and formulae- different categories of functions, chart-creating and formatting a chart, filter, working with single and multiple work books, cell referencing, printing and previewing a document.	14
Unit – 3	
Introduction to presentation tools-creating and viewing a presentation, applying design template, formatting options, inserting different objects in a presentation, customize a presentation, adding audio to a presentation, Slide animation, preview Slide transitions Slide show options, adding effect to presentation.	14

Reference books

- 1. Computer Basics with Office Automation- Archana Kumar, Dreamtech press, First Edition.
- 2. The Handbook of Office Automation- Ralph Tomas Reilly, Iuniverse publication, First Edition.

Course Code: Open Elective OE-2 [FSA890]	Course Title: C Programming Concepts
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 2½ Hours

Course Outcomes (COs): After completing this course satisfactorily, a student will be able to

- Confidently operate Desktop Computers to carry out computational tasks.
- Understand working of Hardware and Software and the importance of operating systems.
- Understand programming languages, number systems, peripheral devices, networking,
- multimedia and internet concepts.
- Read, understand and trace the execution of programs written in C language.
- Write the C code for a given problem.
- Perform input and output operations using programs in C.
- Write programs that perform operations on arrays.

Course Content	Hours
Unit – 1	
Fundamentals of Computers: Introduction to Computers -Hardware, software System software, Application software, Utility software, Operating System; Computer Languages – Machine Level, Assembly Level & High-Level Languages, Translator Programs – Assembler, Interpreter and Compiler; Planning a Computer Program – Algorithm and Flowchart with Examples. Introduction to C Programming: Over View of C; History and Features of C; Structure of a C Program with Examples; Creating and Executing a C Program; Compilation process in C. C Programming Basic Concepts: C Character Set; C tokens - keywords, identifiers, constants, and variables; Data types; Declaration & initialization of variables; Symbolic constants.	14
Unit – 2	
Input and output with C: Formatted I/O functions - printf and scanf, control stings and escape sequences, output specifications with printf functions; Unformatted I/O functions to read and display single character and a string - getchar, putchar, gets and puts functions, C Operators & Expressions: Arithmetic operators; Relational operators; Logical operators; Assignment operators; Increment & Decrement operators; Bitwise operators; Conditional operator; Special operators; Operator Precedence and Associatively; Evaluation of arithmetic expressions; Type conversion. Control Structures: Decision making Statements - Simple if, if_else, nested if_else, else_if ladder, Switch-case, goto, break & continue statements; Looping Statements - Entry controlled and Exit controlled statements, while, do-while, for loops, Nested loops.	14
Unit – 3 User Defined Functions: Need for user defined functions; Format of C user defined functions; Components of user defined functions - return type, name, parameter list, function body, return statement and function call; Categories of user defined functions - With and without parameters and return type. Arrays: One Dimensional arrays - Declaration, Initialization and Memory representation; Two Dimensional arrays - Declaration, Initialization and Memory representation. Strings: Declaring & Initializing string variables; String handling functions - strlen, strcmp, strcpy and strcat; Character handling functions - toascii, toupper, tolower, isalpha, isnumeric etc. Basics of Pointers in C: Understanding pointers - Declaring and initializing pointers, accessing address and value of variables using pointers; Pointer Arithmetic; Advantages and disadvantages of using pointers;	14

Text Books:

1. Pradeep K. Sinha and Priti Sinha: Computer Fundamentals (Sixth Edition), BPB Publication

2. E. Balgurusamy: Programming in ANSI C (TMH)

References:

- 1. Kamthane: Programming with ANSI and TURBO C (Pearson Education)
- 2. V. Rajaraman: Programming in C (PHI EEE)
- 3. S. ByronGottfried: Programming with C (TMH)
- 4. Kernighan & Ritche: The C Programming Language (PHI)
- 5. Yashwant Kanitkar: Let us C 6. P.B. Kottur: Programming in C (Sapna Book House)

II Semesters

Course Code: Open Elective OE-3 [FSB880]	Course Title: e-Commerce
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 2½ Hours

Course Outcomes (COs):

- Be familiar with different e-commerce theories and terminology.
- Assess the impact of internet and internet technology in a business electronic commerce and electronic business.
- Learn strategies for e-commerce and electronic payment system.

Course Content	Hours
Unit – 1	
Introduction to e-commerce, the difference between e-commerce and e-business, Technological building blocks underlying e-commerce: the Internet, Web, and Mobile Platform, Major Trends in e-commerce, Unique Features of e-commerce Technology. Modes of electronic commerce: Overview, Electronic data interchange (EDI), e- commerce with WWW/Internet. Payments and Security: Electronic cash and electronic payment Schemes: Internet monetary payment and Security requirements, payment and purchase order process, Online electronic cash.	14
Unit – 2	
Types of e-commerce: Business-to-Consumer (B2C), Business-to-Business (B2B), Consumer-to-Consumer (C2C), Mobile e-commerce (M-commerce), Social e- commerce, Local e-commerce. Consumer-oriented e-commerce: Introduction, Traditional retailing and e-retailing, benefits of e-retailing, Key success factors, Models of e-retailing, features of e- retailing, developing a consumer-oriented e-commerce system, The PASS model.	14
Unit – 3	
e-Commerce Infrastructure: The Internet, Technology Background, Internet — Key Technology concepts, TCP/IP , IP addresses, Domain names, DNS and URLs, Client Server Computing, Cloud computing model, Mobile platform. Internet and Web: Hypertext, HTML, XML, Web servers and clients, Web browsers, Communication tools — E mail, messaging apps.	14

Text Books:

1. Laudon, Kenneth C., and Carol Guercio Traver. *E-Commerce 2020-2021*. Pearson, 2020. 2.Laudon, Kenneth C., and Carol Guercio Traver. *E-commerce Essentials*. Pearson, 2014.

References:

1. Ravi Kalakota, Andrew B. Frontiers of Electronic Commerce, Addison Wesley 1996.

Course Code: Open Elective OE-4 [FSB890]	Course Title: Web Designing
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

- Be familiar with different web design theories and terminology.
- Analyze a web page and identify its elements and attributes.
- Create web pages using XHTML and Cascading Style Sheets.
- Build dynamic web pages using JavaScript (Client-side programming)

Course Content	Hours
Unit – 1	
Fundamentals: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP,	14
Security, the Web Programmers Toolbox. Introduction to XHTML: Basic syntax,	
Standard structure, Basic text markup, Images, Hypertext Links, Lists, Tables, Forms,	
Frames	
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property	
value forms, Font properties, List properties, Color, Alignment of text, The box model,	
Background images, and <div> tags</div>	
Unit – 2	
The Basics of JavaScript: Overview of JavaScript, Object orientation and JavaScript,	14
Syntactic characteristics, Primitives, operations, and expressions, Screen output and	
keyboard input, Control statements, Object creation and modification, Arrays, Functions,	
Constructors, Pattern matching using regular expressions, Errors in scripts, Examples.	
The JavaScript execution environment, The Document Object Model, Element access in	
JavaScript, Events and event handling, handling events from the Body elements	
Unit – 3	
Button elements, Text box and Password elements, The DOM 2 event model, the	14
navigator object, DOM tree traversal and modification.	
Dynamic documents with JavaScript: Introduction, positioning elements, moving	
elements, Element visibility, changing colors and fonts, Dynamic content, Stacking	
elements, locating the mouse cursor, Reacting to a mouse click, slow movement of	
elements, Dragging and dropping elements.	

Text Books:

1. Robert W. Sebesta: Programming the World Wide Web,4th Edition, Pearson Education, 2008.

References:

1. M. Deitel, P.J. Deitel, A. B. Goldberg: Internet & World Wide Web How to Program, 4th Edition, Pearson Education, 2004.

2. Chris Bates: Web Programming Building Internet Applications, 3rd Edition, Wiley India, 2007.

3. Xue Bai et al: The web Warrior Guide to Web Programming, Cengage Learning, 2003.

NEP-2020 Model Syllabus for BSc (Basic and Honors), Semesters III and IV

Semester: III

Course Code: DSC-3 [FSC 450] Course Title: Object Oriented Programming in Java	
Course Credits: 04	Hour of Teaching / Week: 04 Hours
Formative Assessment Marks: 40	Total Contact Hours: 52 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

At the end of the course, students will be able to:

- Explain the object-oriented concepts and JAVA.
- Write JAVA programs using OOP concepts like Abstraction, Encapsulation, Inheritance and Polymorphism.
- Implement Classes and multithreading using JAVA.
- Demonstrate the basic principles of creating Java applications with GUI.

Course Content	Hours
Unit – 1	
 Introduction to Java: Basic OOPs concepts, Basics of Java programming, Data types, Variables, Operators, Control structures including selection, Looping, Java methods, Overloading, Math class, Arrays in java. Objects and Classes: Basics of objects and classes in java, Constructors, Finalizer, Visibility modifiers. 	13
Unit – 2	
Methods and objects, Inbuilt classes like String, Character, String Buffer, File, this reference. Inheritance and Polymorphism: Inheritance in java, Super and sub class, Overriding, Object class, Polymorphism, Dynamic binding, Generic programming, Casting objects, Instance of operator, Abstract class, Interface in java, Package in java, UTIL package.	13
Unit – 3	
Event and GUI programming: Event handling in java, Event types, Mouse and key events, GUI Basics, Panels, Frames, Layout Managers: Flow Layout, Border Layout, Grid Layout, GUI components like Buttons, Check Boxes, Radio Buttons, Labels, Text Fields, Text Areas, Combo Boxes, Lists, Scroll Bars, Sliders, Windows, Menus, Dialog Box, Applet and its life cycle, Exception handling mechanism.	13
Unit – 4	
I/O programming: Text and Binary I/O, Binary I/O classes, Object I/O, Random Access Files. Multithreading in java: Thread life cycle and methods, Runnable interface, Thread synchronization, Exception handling with try catch-finally, Collections in java, Network Programming	13

References:

Object Oriented Programming with Java: Somashekara M.T., Guru, D.S., Manjunatha K.S, 1st Edition, PHI Learning 2017.

Programming with Java, By E Balagurusamy – A Primer, 4th Edition, McGraw Hill Publication. Core Java Volume I – Fundamentals, By Cay S. Horstmann, Prentice Hall.

Java 2 - The Complete Reference, Herbert Schildt, 5th Edition, McGraw Hill Publication, 2017. Java - The Complete Reference, Herbert Schildt, 7th Edition, McGraw Hill Publication, 2017.

Course Code: DSC-3L [FSC 450]	Course Title: Java Programming Lab
Course Credits: 02	Hour of Teaching / Week: 04 Hours
Formative Assessment Marks: 25	Total Contact Hours: 52 Hours
Exam Marks: 25	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Implement Object Oriented programming concept using basic syntaxes of control Structures
- Identify classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem
- Demonstrates how to achieve reusability using inheritance
- Demonstrate understanding and use of interfaces, packages, different exception handling mechanisms and concept of multithreading for robust faster and efficient application development.
- Identify and describe common user interface components to design GUI in Java using Applet & AWT along with response to events

Java Programming Lab

PART A: Fundamentals of OOPs in Java

- 1. Program to assign two integer values to X and Y. Using the "if" statement the output of the program should display a message whether X is greater than Y.
- 2. Program to list the factorial of the numbers 1 to 10. To calculate the factorial value, use while loop. (Hint Fact of 4 = 4*3*2*1)
- 3. Program to add two integers and two float numbers. When no arguments are supplied, give a default value to calculate the sum. Use function overloading.
- 4. Program to perform mathematical operations. Create a class called AddSub with methods to add and subtract. Create another class called MulDiv that extends from AddSub class to use the member data of the super class. MulDiv should have methods to multiply and divide A main function should access the methods and perform the mathematical operations.
- 5. Program with class variable that is available for all instances of a class. Use static variable declaration. Observe the changes that occur in the object's member variable values.
- 6. Program
 - a. To find the area and circumference of the circle by accepting the radius from the user.
 - b. To accept a number and find whether the number is Prime or not
- 7. Program to create a student class with following attributes; Enrollment No: Name, Mark of sub1, 3 Mark of sub2, mark of sub3, Total Marks. Total of the three marks must be calculated only when the student passes in all three subjects. The pass mark for each subject is 50. If a candidate fails in any one of the subjects his total mark must be declared as zero. Using this condition write a constructor for this class. Write separate functions for accepting and displaying student details. In the main method create an array of three student objects and display the details.
- 8. In a college first year class are having the following attributes Name of the class (BCA, BCom, BSc), Name of the staff No of the students in the class, Array of students in the class
- 9. Define a class called first year with above attributes and define a suitable constructor. Also write a method called best Student () which process a first-year object and return the student with the highest total mark. In the main method define a first-year object and find the best student of this class

10. Program to define a class called employee with the name and date of appointment. Create ten employee objects as an array and sort them as per their date of appointment. ie, print them as per their seniority.

PART B: Exception Handling & GUI Programming

- 1. Program to catch Negative Array Size Exception. This exception is caused when the array is initialized to negative values.
- 2. Program to handle Null Pointer Exception and use the "finally" method to display a message to the user.
- 3. Program which creates and displays a message on the window
- 4. Program to draw several shapes in the created window
- 5. Program to create an applet and draw grid lines
- 6. Program which creates a frame with two buttons father and mother. When we click the father button the name of the father, his age and designation must appear. When we click mother similar details of mother also appear.
- 7. Create a frame which displays your personal details with respect to a button click
- 8. Create a simple applet which reveals the personal information of yours.
- 9. Program to move different shapes according to the arrow key pressed.
- 10. Demonstrate the various mouse handling events using suitable example.

Note: Student has to execute a minimum of 8 programs in each part to complete the Lab course.

Evaluation Scheme for Lab Examination:

Assessment Criteria	Marks
Writing 2 Programs	10
Execution of 1 Program	10
Viva and Record	05
Total	25

Semester: IV

Course Code: DSC-4 [FSD 450]	Course Title: Database Management System
Course Credits: 04	Hour of Teaching / Week: 04 Hours
Formative Assessment Marks: 40	Total Contact Hours: 52 Hours
Exam Marks: 60	Exam Duration: 2½ Hours

Course Outcomes (COs):

At the end of the course, students will be able to:

- Explain the various database concepts and the need for database systems.
- Identify and define database objects, enforce integrity constraints on a database using DBMS.
- Demonstrate a Data model and Schemas in RDBMS.
- Identify entities and relationships and draw ER diagram for a given real-world problem.
- Convert an ER diagram to a database schema and deduce it to the desired normal form.
- Formulate queries in Relational Algebra, Structured Query Language (SQL) for database manipulation.
- Explain the transaction processing and concurrency control techniques.

Course Content	Hours
Unit – 1	
Database Architecture: Introduction to Database system applications.	13
Characteristics and Purpose of database approach. People associated with Database	
system. Data models. Database schema. Database architecture. Data independence.	
Database languages, interfaces, and classification of DBMS. E-R Model: Entity-	
Relationship modeling: E - R Model Concepts: Entity, Entity types, Entity sets,	
Attributes, Types of attributes, key attribute, and domain of an attribute.	
Unit – 2	
Relationships between the entities. Relationship types, roles and structural constraints,	13
degree and cardinality ratio of a relationship. Weak entity types, E-R diagram.	
Relational Data Model: Relational model concepts. Characteristics of relations.	
Relational model constraints: Domain constrains, key constraints, primary & foreign	
key constraints, integrity constraints and null values. Relational Algebra: Basic	
Relational Algebra operations. Set theoretical operations on relations. JOIN operations	
Aggregate Functions and Grouping. Nested Sub Queries-Views.	
Unit – 3	
Data Normalization: Anomalies in relational database design. Decomposition.	13
Functional dependencies - Axioms, Minima and Maxima covers. Normalization. First	
normal form, Second normal form, Third normal form. Boyce-Codd normal form.	
Unit – 4	
Query Processing Transaction Management: Introduction Transaction Processing.	13
Single user & multiuser systems. Transactions: read & write operations. Need of	
concurrency control: The lost update problem, Dirty read problem. Types of failures.	
Transaction states. Desirable properties (ACID properties) of Transactions.	

References:

- 1. Fundamentals of Database Systems, Ramez Elamassri, Shankant B. Navathe, 7th Edition, Pearson, 2015
- 2. An Introduction to Database Systems, Bipin Desai, Galgotia Publications, 2010.
- 3. Introduction to Database System, C J Date, Pearson, 1999.

- 4. Database Systems Concepts, Abraham Silberschatz, Henry Korth, S.Sudarshan, 6th Edition, McGraw Hill, 2010.
- 5. Database Management Systems, Raghu Rama Krishnan and Johannes Gehrke, 3rd Edition, McGraw Hill, 2002.

Course Code: DSC-4L [FSD 450]	Course Title: DBMS Lab
Course Credits: 02	Hour of Teaching / Week: 04 Hours
Formative Assessment Marks: 25	Total Contact Hours: 52 Hours
Exam Marks: 25	Exam Duration: 03 Hours

Course Outcomes (COs):

Student would be able to create tables, execute queries

- 1. Execute a single line query and group functions.
- 2. Execute DDL Commands.
- 3. Execute DML Commands 4. Execute DCL and TCL Commands.
- 4. Implement the Nested Queries.
- 5. Implement Join operations in SQL
- 6. Create views for a particular table
- 7. Implement Locks for a particular table

Activity 1: Database: Student (DDL, DML Statements) Table: Student

Name	Reg. No	Class	Major
Smith	17	1	CS
Brown	8	2	CS

Table: Course

Course Name	Course Number	Credit Hours	Department
Introduction to Computer Science	CS1310	4	CS
Data Structure	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database Management System	CS3380	3	CS

Table: Section

Section Identifier	Course Number	Year	Instructor
85	MATH2410	98	King
92	CS1310	98	Andreson
102	CS3320	99	Knuth
112	MATH2410	99	Chang
119	CS1310	99	Andreson
135	CS3380	99	Stone

Table: Grade_Report

Reg. No	Section_Identifier	Grade
17	112	В
17	119	С
8	85	А
8	92	А
8	102	В
8	135	А

- Create Tables using create statement
- Insert rows to individual tables using insert statement
- Alter table section add new field section and update the records
- Delete brown's grade report
- Drop the table section

Activity 2: (Select clause, Arithmetic Operators) Database: Employee Create Following tables and insert tuples with suitable constraints

Table: EMPLOYEE

	EMPID	FIRSTANAME	LASTNAME	Hire_Date	ADDRESS	CITY
Table	1001	George	Smith	11-May-06	83 first street	Paris
:	1002	Mary	Jones	25-Feb-08	842 Vine Ave	Losantiville
EMP	1012	Sam	Tones	12-Sep-05	33 Elm St.	Paris
SALA	1015	Peter	Thompson	19-Dec-06	11 Red Road	Paris
RY	1016	Sarath	Sharma	22-Aug-07	440 MG Road	New Delhi
	1020	Monika	Gupta	07-Jun-08	9 Bandra	Mumbai

EMPID	SALARY	BENEFITS	DESIGNATION
1001	10000	3000	Manager
1002	8000	1200	Salesman
1012	20000	5000	Director
1015	6500	1300	Clerk
1016	6000	1000	Clerk
1020	8000	1200	Salesman

Write queries for the following

- 1. To display FIRSTNAME, LASTNAME, ADDRESS AND CITY of all employees living in PARIS.
- 2. To display the content of employee table in descending order of FIRSTNAME
- 3. Select FIRSTNAME and SALARY of salesman
- 4. To display the FIRSTNAME, LASTNAME, AND TOTAL SALARY of all employees from the table EMPLOYEE and EMPSALARY. Where TOTALSALARY is calculated as SALARY+BENEFITS
- 5. List the Names of employees, who are more than 1 year old in the organization
- 6. Count number of distinct DESINGATION from EMPSALARY
- 7. List the employees whose names have exactly 6 characters
- 8. Add new column PHONE_NO to EMPLOYEE and update the records
- 9. List employee names, who have joined before 15-Jun-08 and after 16-Jun-07
- 10. Generate Salary slip with Name, Salary, Benefits, HRA-50%, DA-30%, PF-12%, Calculate gross. Order the result in descending order of the gross.

Activity 3: (Logical, Relational Operators)

Database: Library

Create Following tables and insert tuples with suitable constraints

Book_Id	Book_name	Author_Name	Publishers	Price	Туре	Quantity
C0001	The Klone and I	Lata Kappor	EPP	355	Novel	5
F0001	The Tears	WilliamHopkins	First Publ	650	Fiction	20
T0001	My First C++	Brain & Brooke	ERP	350	Text	10
T0002	C++ Brainwork"s	A.W.Rossaine	TDH	350	Text	15
F0002	Thunderbolts	Ana Roberts	First Publ.	750	Fiction	50

Table: Issued

Book_Id	Quantity_Issued
T0001	4
C0001	5
F0001	2
T0002	5
F0002	8

Write queries for the following

- 1. To show Book name, Author name and price of books of First Publ. publisher
- 2. Display Book id, Book name and publisher of books having quantity more than 8 and price less than 500
- 3. Select Book id, book name, author name of books which is published by other than ERP publishers and price between 300 to 700
- 4. Generate a Bill with Book id, Book name, Publisher, Price, Quantity, 4% of VAT "Total"
- 5. Display book details with book id^s's C0001, F0001, T0002, F0002 (Hint: use IN operator)
- 6. Display Book list other than, type Novel and Fiction
- 7. Display book details with author name starts with letter "A"
- 8. Display book details with author name starts with letter "T" and ends with "S"
- 9. Select Book_Id, Book_Name, Author Name , Quantity Issued where Books.Books_Id = Issued.Book_Id
- 10. List the book_name, Author_name, Price. In ascending order of Book_name and then on descending order of price

Activity 4: (Date Functions)

Database: Lab

Create Following table and insert tuples with suitable constraints

Table: Equipment_Details

No.	ItemName	Costperitem	Quantity	Dateofpurchase	Warranty	Operational
1	Computer	30000	9	21/5/07	2	7
2	Printer	5000	3	21/5/06	4	2
3	Scanner	8000	1	29/8/08	3	1
4	Camera	7000	2	13/6/05	1	2
5	UPS	15000	5	21/5/08	1	4
6	Hub	8000	1	31/10/08	2	1
7	Plotter	25000	2	11/1/09	2	2

(Use date functions and aggregate functions)

- 1. To select the ItemName purchase after 31/10/07
- 2. Extend the warranty of each item by 6 months
- 3. Display ItemName, Dateof purchase and number of months between purchase date and present date
- 4. To list the ItemName in ascending order of the date of purchase where quantity is more than 3.
- 5. To count the number, average of costperitem of items purchased before 1/1/08
- 6. To display the minimum warranty, maximum warranty period
- 7. To Display the day of the date, month, year of purchase in characters
- 8. To round of the warranty period to month and year format.

9. To display the next Sunday from the date "07-JUN-96"

10. To list the ItemName, which are within the warranty period till present date

Activity 5: (Numeric, character functions)

Use Functions for the following

- 1. Find the mod of 165,16
- 2. Find Square Root of 5000
- 3. Truncate the value 128.3285 to 2 and -1 decimal places
- 4. Round the value 92.7683 to 2 and -1 decimal places
- 5. Convert the string "Department" to uppercase and lowercase
- 6. Display your address convert the first character of each word to uppercase and rest are in lowercase
- 7. Combine your first name and last name under the title Full name
- 8. A) Take a string length maximum of 15 displays your name to the left. The remaining space should be filled with '*'
- 9. Take a string length maximum of 20 displays your name to the right. The remaining space should be filled with '#'
- 10. Find the length of the string 'JSS College, Mysore'
- 11. Display substring 'BASE' from 'DATABASE'
- 12. Display the position of the first occurrence of character 'o' in Position and Length
- 13. Replace string Database with Data type
- 14. Display the ASCII value of ' ' (Space)
- 15. Display the Character equivalent of 42

6: Database Activity: subject

Create Following table and insert tuples with suitable constraints

Table – Physics

RegNo	Name	Year	Combination
AJ00325	Ashwin	First	РСМ
AJ00225	Swaroop	Second	PMCs
AJ00385	Sarika	Third	PME
AJ00388	Hamsa	First	PMCs

Table - Computer Science

RegNo	Name	Year	Combination
AJ00225	Swaroop	Second	PMCs
AJ00296	Tajas	Second	BCA
AJ00112	Geetha	First	BCA
AJ00388	Hamsa	First	PMCs

- 1. Select all students from physics and Computer Science
- 2. Select student common in physics and Computer Science
- 3. Display all student details those are studying in second year
- 4. Display student those who are studying both physics and computer science in second year
- 5. Display the students studying only physics
- 6. Display the students studying only Computer Science
- 7. select all student having PMCs combination
- 8. select all student having BCA combination
- 9. select all student studying in Third year
- 10. Rename table Computer Science to CS

Activity 7: (views) Database: Railway Reservation System

Create Following table and insert tuples with suitable constraints

Table: Train Details

Train_No	Train_Name	Start_Place	Destination
RJD16	Rajdhani Express	Bangalore	Mumbai
UDE04	Udhyan Express	Chennai	Hyderabad
KKE55	Karnataka Express	Bangalore	Chennai
CSE3	Shivaji Express	Coimbatore	Bangalore
JNS8	Janashatabdi	Bangalore	Salem

Table: Availability

Train_No	Class	Start_Place	Destination	No_of_Seats
RJD16	Sleeper Class	Bangalore	Mumbai	15
UDE04	First Class	Chennai	Hyderabad	22
KKE55	First Class AC	Bangalore	Chennai	15
CSE3	Second Class	Coimbatore	Bangalore	8
JNS8	Sleeper Class	Bangalore	Salem	18

- 1. Create view sleeper to display train no, start place, destination which have sleeper class and perform the following
 - a. insert new record
 - b. update destination='Manglore' where train no= 'RJD16'
 - c. delete a record which have train no= 'KKE55'
- 2. Create view details to display train no, train name, class
- 3. Create view total seats to display train number, start place, use count function to no of seats, group by start place and perform the following
 - a. insert new record
 - b. update start place= 'Hubli' where train no= 'JNS8'
 - c. delete last row of the view
- 4. Rename view sleeper to class
- 5. Delete view details

Activity 8 (group by, having clause)

Create Following table and insert tuples with suitable constraints

Database: Bank system

Table: Account

Account_No	Cust_Name	Brach_ID
AE0012856	Reena	SB002
AE1185698	Akhil	SB001
AE1203996	Daniel	SB004
AE1225889	Roy	SB002
AE8532166	Sowparnika	SB003
AE8552266	Anil	SB003
AE1003996	Saathwik	SB004
AE1100996	Swarna	SB002

Table: Branch

Branch_ID	Branch_Name	Branch_City
SB001	Malleshwaram	Bangalore
SB002	MG Road	Bangalroe
SB003	MG Road	Mysore
SB004	Jainagar	Mysore

Table: Depositor

Account_No	Branch_Id	Balance
AE0012856	SB002	12000
AE1203996	SB004	58900
AE8532166	SB003	40000
AE1225889	SB002	150000

Table: Loan

Account_No	Branch_Id	Balance
AE1185698	SB001	102000
AE8552266	SB003	40000
AE1003996	SB004	15000
AE1100996	SB002	100000

- 1. Display Total Number of accounts present in each branch
- 2. Display Total Loan amount in each branch
- 3. Display Total deposited amount in each branch by descending order
- 4. Display max, min loan amount present in each city.
- 5. Display average amount deposited in each branch, each city
- 6. Display maximum of loan amount in each branch where balance is more than 25000
- 7. Display Total Number of accounts present in each city
- 8. Display all customer details in ascending order of brachid
- 9. Update Balance to 26000 where accno=AE1003996
- 10. Display Customer Names with their branch Name

Evaluation Scheme for Lab Examination:

Assessment Criteria	Marks
Writing 2 Programs	10
Execution of 1 Program	10
Viva and Record	05
Total	25

Skill Enhancement Course: SEC for B.Sc. & other Subject Students

Course Code: SEC-2	Course Title: Artificial Intelligence
Course Credits: 1 + 1 = 02	Hour of Teaching / Week: Theory (1Hour) + Practical (2 Hours)
Formative Assessment Marks: 25	Total Contact Hours: (13 T + 26 P Hours)
Exam Marks: 25	Exam Duration: 1 Hours
[FHC210 / FSD210 / FAD210]	

Semester: III / IV

Course Outcomes (COs):

At the end of the course, students will be able to:

- Appraise the theory of Artificial intelligence and list the significance of AI.
- Discuss the various components that are involved in solving an AI problem.
- Illustrate the working of AI Algorithms in the given contrast.
- Analyze the various knowledge representation schemes, Reasoning and Learning techniques of AI.
- Apply the AI concepts to build an expert system to solve the real-world problems.

Course Content	Hours
Unit – 1	
Overview of AI: Definition of Artificial Intelligence, Philosophy of AI, Goals of AI, Elements	06
of AI system, Programming a computer without and with AI, AI Techniques, History	
of AI.	
Intelligent Systems: Definition and understanding of Intelligence, Types of	
Intelligence, Human Intelligence vs Machine Intelligence.	
Unit – 2	
AI Applications: Virtual assistance, Travel and Navigation, Education and Healthcare, optical	07
character recognition, E-commerce and mobile payment systems, Image based search and	
photo editing.	
AI Examples in daily life: Installation of AI apps and instructions to use AI apps. Introduction to Robotics.	
Unit – 3 Laboratory Activities:	
Amazon Alexa:	26
https://play.google.com/store/apps/details?id=com.amazon.dee.app&hl=en&am p;gl=US	20
Google Lens: <u>https://play.google.com/store/search?q=google+lens&c=apps&hl=en≷=US</u>	
Image to Text to Speech ML OCR:	
https://play.google.com/store/apps/details?id=com.mlscanner.image.text.speech&	
hl=en_IN≷=US	
Google Pay:	
https://play.google.com/store/apps/details?id=com.google.android.apps.nbu.paisa_user&hl=en_	
<u>IN≷=US</u>	
Grammarly: https://play.google.com/store/search?q=grammarly&c=apps&hl=en IN≷	
Google Map: https://play.google.com/store/search?q=google+maps&c=apps&hl=en≷=US	
FaceApp:https://play.google.com/store/apps/details?id=io.faceapp&hl=en_IN≷=US	
Socratic: https://play.google.com/store/apps/details?id=com.google.socratic&hl=en_IN≷	
<u>=US</u>	
Google Fit: Activity Tracking:	
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness&h 1=en	
IN≷=US	
SwiftKey Keyboard: https://swiftkey-keyboard.en.uptodown.com/android	
E-commerce App: <u>https://play.google.com/store/apps/details?id=com.jpl.jiomart&hl=en</u>	
<u>IN≷=US</u>	

Text Books:

- 1. Wolfgang Ertel, "Introduction to Artificial Intelligence", 2nd Edition, Springer International Publishing 2017.
- 2. Michael Negnevitsky, "Artificial Intelligence A Guide to Intelligent Systems", 2nd Edition, Pearson Education Limited 2005.

References:

- 1. https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_tutorial.pdf
- 2. Kevin Knight, Elaine Rich, Shivashankar B. Nair, "Artificial Intelligence", 3rd Edition, July 2017.

Reference Links:

- 1. Voice Assistant: https://alan.app/blog/voiceassistant-2/
- 2. Browse with image: https://www.pocket-lint.com/apps/news/google/141075-what-is- google-lens-and-how-does-it-work-and-which-devices-have-it
- 3. OCR: https://aws.amazon.com/what-is/ocr/
- 4. Mobile Payment system: https://gocardless.com/en-us/guides/posts/how-do-mobile- payment-systems-work/
- 5. Grammarly: https://techjury.net/blog/how-to-use-grammarly/#gref
- 6. Travel & Navigation: https://blog.google/products/maps/google-maps-101-ai-power- new-features-io-2021/
- 7. AI in photo editing: https://digital-photography-school.com/artificial-intelligence- changed-photo-editing/
- 8. AI in education: https://www.makeuseof.com/what-is-google-socratic-how-does-it- work/
- 9. AI in health and fitness: https://cubettech.com/resources/blog/implementing-machine- learningand-ai-in-health-and-fitness/
- 10. E-commerce and online shopping: https://medium.com/@nyxonedigital/importance- 2 of-e-commerce-and-online-shopping-and-why-to-sell-online-5a3fd8e6f416

Open Elective Courses offered by the Department of Computer Science

Semester: III

Course Code: OE-5 [FSC 880]	Course Title: Python Programming Concepts
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

- Explain the fundamentals of Computers.
- Explain the basic concepts of Python Programming.
- Demonstrate proficiency in the handling of loops and the creation of functions.
- Identify the methods to create and store strings.

Course Content	Hours
Unit – 1 Fundamentals of Computers	
Introduction to Computers - Computer Definition, Characteristics of Computers, Evolution and History of Computers, Types of Computers, Basic Organization of a Digital Computer; Number Systems – different types, conversion from one number system to another; Computer Codes – BCD, Gray Code, ASCII and Unicode; Boolean Algebra – Boolean Operators with Truth Tables; Types of Software – System Software and Utility Software; Computer Languages - Machine Level, Assembly Level & High Level Languages, Translator Programs – Assembler, Interpreter and Compiler; Planning a Computer Program - Algorithm, Flowchart and Pseudo code with Examples. Python Basics: - Introduction to Features and Applications of Python; Python Versions; Installation of Python; Python Command Line mode and Python IDEs; Simple Python Program. Identifiers; Keywords; Statements and Expressions; Variables; Operators; Precedence and Association;	14
Unit – 2 Data types and control structure	
Data Types; Indentation; Comments; Built-in Functions- Console Input and Console Output, Type Conversions; Python Libraries; Importing Libraries with Examples; Illustrative programs. Python Control Flow: Types of Control Flow; Control Flow Statements- if, else, elif, while loop, break, continue statements, for loop Statement; range() and exit () functions; Illustrative programs.	14
Unit – 3 Functions and Strings	
Python Functions: Types of Functions; Function Definition- Syntax, Function Calling, Passing Parameters/arguments, the return statement; Default Parameters; Command line Arguments; Key Word Arguments; Illustrative programs. Srings: Creating and Storing Strings; Accessing Sting Characters; the str() function; Operations on Strings- Concatenation, Comparison, Slicing and Joining, Traversing; Format Specifiers; Escape Sequences; Raw and Unicode Strings; Python String Methods; Illustrative programs.	14

References

- 1. Computer Fundamentals (BPB), P. K. Sinha & Priti Sinha
- Think Python How to Think Like a Computer Scientist, Allen Downey et al., 2nd Edition, Green Tea Press. Freely available online 2015.
 - @https://www.greenteapress.com/thinkpython/thinkCSpy.pdf
- 3. Introduction to Python Programming, Gowrishankar S et al., CRC Press, 2019.
- 4. http://www.ibiblio.org/g2swap/byteofpython/read/
- 5. http://scipy-lectures.org/intro/language/python language.html
- 6. <u>https://docs.python.org/3/tutorial/index.html</u>

Course Code: OE-6 [FSC 890]	Course Title: Fundamentals of Multimedia
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

• Students will learn about multimedia, which is a field concerned with the computer-controlled integration of text, graphics, drawings, still and moving images(video), animation, audio and any other media where every type of information can be represented, stored, transmitted and processed digitally.

Course Content	Hours
Unit – 1 Introduction to Multimedia	
Concepts of Multimedia, Multimedia applications, Advantage of Digital Multimedia, Multimedia system Architecture, Objects of Multimedia. Introduction to Compression and Decompression Techniques and its types. File format standards- RTF, TIFF, RIFF, MIDI, JPEG, AVI, JPEG, TWAIN Architecture.	14
Unit – 2 Multimedia input and output technologies	
Key Technology Issues, Pen Input, Video and Image Display Systems, Print Output Technologies, Image Scanners, Digital Voice and Audio, Video Images and Animation, Full Motion Video.	14
Unit – 3 Secured Multimedia and Authentication	
Secured Multimedia, Digital Rights Management Systems, and Technical Trends - Multimedia encryption - Digital Watermarking – Security Attacks. Multimedia Authentication - Pattern, Speaker and Behavior Recognition – Speaker Recognition - Face Recognition	14

References

- 1. Wenjun Zeng, Heather Yu and Ching Yung Lin, "Multimedia Security technologies for Digital rights Management", Elsevier Inc 2006.
- 2. Chun-Shien Lu, "Multimedia Security : Steganography and Digital Watermarking techniques for Protection of Intellectual Property", Springer Inc 2007.
- 3. Andleigh PK and Thakrar K, "Multimedia Systems", Addison Wesley Longman, 1999.
- 4. Fred Halsall, "Multimedia Communications", Addison Wesley, 2000.
- 5. https://www.tutorialspoint.com/multimedia/multimedia introduction.html
- 6. https://www.tutorialspoint.com/multimedia/multimedia images graphics.html

Semester: IV

Course Code: OE-7 [FSD 880]	Course Title: Cloud Computing
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

After successful completion of the course, the student is able to

- Learn in depth Fundamentals of Cloud Computing
- Understand the details of Cloud Services and File System
- Learn in depth Concept of Collaborating with Cloud
- Understand the details of Virtualization in cloud
- Learn the classification and characteristics of Security challenges in Cloud Computing
- Specify the classification and characteristics of Security challenges in Cloud Computing

Course Content	Hours
Unit – 1	
Cloud Introduction: Cloud Computing Fundamentals: Cloud Computing definition, Types of cloud, Cloud services: Benefits and challenges of cloud computing, Evolution of Cloud Computing, usage scenarios and Applications, Business models around Cloud– Major Players in Cloud Computing - Issues in Cloud - Eucalyptus - Nimbus - Open Nebula, CloudSim. Cloud Services and File System: Types of Cloud services: Software as a Service - Platform as a Service – Infrastructure as a Service - Database as a Service - Monitoring as a Service – Communication as services.	14
Unit – 2	
Service providers- Google App Engine, Amazon EC2, Microsoft Azure, Sales force. Collaborating With Cloud: Collaborating on Calendars, Schedules and Task Management – Collaborating on Event Management, Contact Management, Project Management – Collaborating on Word Processing, Databases – Storing and Sharing Files- Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services – Collaborating via Social Networks – Collaborating via Blogs and Wikis.	14
Unit – 3	
Virtualization For Cloud: Need for Virtualization – Pros and cons of Virtualization – Types of Virtualization – System Vm, Process VM, Virtual Machine monitor – Virtual machine properties - Interpretation and binary translation, HLL VM - Hypervisors – Xen, KVM, VMWare, Virtual Box, Hyper-V.	14

Reference Books:

- 1. Bloor R., Kanfman M., Halper F. Judith Hurwitz "Cloud Computing" Wiley India Edition, 2010
- 2. John Rittinghouse& James Ransome, "Cloud Computing Implementation Management and Strategy", CRC Press, 2010
- 3. Antohy T Velte, Cloud Computing: "A Practical Approach", McGraw Hill, 2009
- 4. Michael Miller, Cloud Computing: "Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.James E Smith, Ravi Nair, "Virtual Machines", Morgan Kaufmann Publishers, 2006.

Online Reading/Supporting Material

Haley Beard, "Cloud Computing Best Practices for Managing and Measuring Processes for On-demand Computing", Applications and Data Centers in the Cloud with SLAs, Emereo Pty Limited, July 2008

Webpages.iust.ac.ir/hsalimi/.../89.../Cloud%20Common%20standards.pptop ennebula.org,

www.cloudbus.org/cloudsim/, http://www.eucalyptus.com/

hadoop.apache.org

http://hadoop.apache.org/docs/stable/hdfs_design.html

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive /mapreduce-osdi04.pdf

Course Code: OE-8 [FSD 890]	Course Title: Fundamentals of Mobile Application
Course Credits: 03	Hour of Teaching / Week: 03 Hours
Formative Assessment Marks: 40	Total Contact Hours: 42 Hours
Exam Marks: 60	Exam Duration: 21/2 Hours

Course Outcomes (COs):

After successful completion of the course, the student is able to

- Deliberate the details of Concepts of Event Driven Programming
- Learn in details with examples issues of Mobile applications
- Specify the details of Mobile applications Development tools and Frameworks
- Deliberate in details with examples common Mobile device UI's

Course Content	Hours
Unit – 1	
Event Driven Programming: UI event loop, Threading for background tasks, Outlets /	14
actions, delegation, notification, Model View Controller (MVC) design pattern.	
Mobile application issues: limited resources (memory, display, network, file system), input	
/ output (multi-touch and gestures), sensors (camera, compass, accelerometer, GPS)	
Unit – 2	
Development tools: Apple iOS toolchain: Objective-C, Xcode IDE, Interface Builder, Device	14
simulator.	
Frameworks: Objective-C and Foundation Frameworks, Cocoa Touch, UI Kit, Others: Core	
Graphics, Core Animation, Core Location and Maps, Basic Interaction.	
Common UI's for mobile devices: Navigation Controllers, Tab Bars, Table Views, Modal	
views, UI Layout.	
Unit – 3	
Data Persistence: Maintaining state between application invocations, File system, Property	14
Lists, SQLite, Core Data.	
Remote Data-Storage and Communication: "Back End" / server side of application, RESTful	
programming, HTTP get, post, put, delete, database design, server-side JavaScript / JSON.	
Code signing: security, Keychain, Developers and App Store License Agreement	

Reference:

- 1. Rajiv Ramnath, Roger Crawfis, and Paolo Sivilotti, Android SDK 3 for Dummies, Wiley, 2011.
- 2. Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications: Architecture, Design, and Development, Prentice Hall, 2004.
- 3. Brian Fling, Mobile Design and Development, O'Reilly Media, 2009. Maximiliano
- 4. Firtman, Programming the Mobile Web, O'Reilly Media, 2010.
- 5. Christian Crumlish and Erin Malone, Designing Social Interfaces, O'Reilly Media, 2009.
- 6. James E Smith, Ravi Nair, "Virtual Machines", Morgan Kaufmann Publishers, 2006.