
Pa
ge
1
Unit 1:

Overview of Digital design with Verilog HDL

Evolution of CAD,

Digital circuit design has evolved rapidly over the last 25 years. Integrated circuits were then

invented where logic gates were placed on a single chip. The first integrated circuit (IC) chips were

SS1 (Small Scale Integration) chips where the gate count was very small. As technologies became

sophisticated, designers were able to place circuits with hundreds of gates on a chip. These chips

were called MS1 (Medium Scale Integration) chips. With the advent of LSI (Large Scale

Integration), designers could put thousands of gates on a single chip. At this point, design processes

started getting very complicated, and designers felt the need to automate these processes. Computer

Aided Design (CAD) techniques began to evolve

Chip designers began to use circuit and logic simulation techniques to verify the functionality

of building blocks of the order of about 100 transistors. The circuits were still tested on the

breadboard, and the layout was done on paper or by hand on a graphic computer terminal.

With the advent of VLSI (Very Large Scale Integration) technology, designers could design

single chips with more than 100,000 transistors. Because of the complexity of these circuits, it was

not possible to verify these circuits on a breadboard. Computer-aided techniques became critical for

verification and design of VLSI digital circuits. Computer programs to do automatic placement and

routing of circuit layouts also became popular. Logic simulators came into existence to verify the

functionality of these circuits before they were fabricated.

Emergence of HDLs

In the digital design field, designers felt the need for a standard language to describe digital

circuits. Thus, Hardware Description Languages (HDLs) came into existence. HDLs allowed the

designers to model the concurrency of processes found in hardware elements. Hardware description

languages such as Verilog HDL and VHDL became popular. HDLs allowed the designers to model

the concurrency of processes found in hardware elements

Logic synthesis pushed the HDLs into the forefront of digital design. Designers no longer had

to manually place gates to build digital circuits. They could describe complex circuits at an abstract

level in terms of functionality and data flow by designing those circuits in HDLs. Logic synthesis

tools would implement the specified functionality in terms of gates and gate interconnections

Design Flow

A typical design flow for designing VLSI IC circuits is shown in the following Figure.

Pa
ge
2

Logic synthesis tools convert the RTL description to a gate-level netlist.

A gate level netlist is a description of the circuit in terms of gates and connections between them.

The gate-level netlist is input to an Automatic Place and Route tool, which creates a layout.

The layout is verified and then fabricated on chip.

Recently Behavioural synthesis tools are emerging. These tools can create RTL descriptions

from a behavioural or algorithmic description of the circuit. As these tools mature, digital circuit

design will become similar to high-level computer programming

Need of Verilog HDL:

 Designs can be described at a very abstract level by use of HDLs. Designers can write their

RTL description without choosing a specific fabrication technology. If a new technology

emerges, designers need not have to redesign their circuit Logic.

 By describing designs in HDLs, functional verification of the design can be done early in the

design cycle

 This provides a precise representation of the design.

Design Specification:

 Design Specifications describe abstractly the
functionality, interface, and overall architecture
of the digital circuit to be designed.

Behavioural description:

 A behavioural description is then created to
analyse the design in terms of functionality,
performance and compliance to standards, and
other high-level issues. Behavioural descriptions
can be written with HDLs.

RTL Description and Functional verification:

The behavioural description is manually
converted to an RTL description. The designer
has to describe the data flow that will implement
the desired digital circuit. From this point
onward, the design process is done with the
assistance of CAD tools.

Pa
ge
3
Trends in HDLs:

1. The current trend in design in HDL is at RTL level, because logic synthesis tools can be

created easily.

2. Behavioural synthesis has recently emerged. As these tools improve, designers will be able to

design directly in terms of algorithms and the behaviour of the circuit and then use CAD tools

to do the translation.

3. For very high speed circuits like microprocessors, the gate level netlist provided by logic

synthesis tools is not optimal. In such cases, designers can mix gate-level description directly

into the RTL description to achieve optimum results.

4. A trend that is emerging for system-level design is a mixed bottom-up methodology. This is

done to reduce development costs and compress design schedules.

Pa
ge
4
2. Hierarchical Modelling Concepts:

Design methodologies:

There are two basic types of digital design methodologies:

1. Top-down design methodology and

2. Bottom-up design methodology.

Top-Down design methodology:

The block diagram of top-down design process is as shown below

In a top-down design methodology, the top-level blocks are defined. The sub-blocks which are

necessary to build the top-level block are identified. The sub-blocks are further subdivided to leaf

cells, which are the cells that cannot further be divided.

Bottom-up design methodology:

The block diagram of Bottom – up design process is as shown below

In a bottom-up design methodology, the building blocks that are available are identified. Bigger cells

are built, using these building blocks. These cells are then used for higher-level blocks until the top-

level block in the design is built.

Typically, a combination of top-down and bottom-up flows is used.

Example:

Pa
ge
5
Consider a negative edge-triggered 4 bit ripple carry counter. The circuit diagram is as shown below

The ripple carry counter shown in Figure is made up of negative edge triggered toggle flip-flops (T-

FF). Each of the T-FFs can be made up from negative edge-triggered D-flip-flops (D-FF) and

inverters. Thus, the ripple carry counter is built in a hierarchical fashion by using building blocks.

The diagram for the design hierarchy is shown below.

In a top-down design methodology, the functionality of the top-level block i.e., the ripple carry

counter is specified. Then, the counter with T-FFs.is implemented which is built with the T-FFs from

the D-FF and an additional inverter gate. Thus, bigger blocks are broken into smaller building sub-

blocks until the blocks cannot be broken further.

The bottom-up methodology flows in the opposite direction. The top-level building blocks are built

using small building blocks.

e.g., D-FF is built from and and or gates, and T-FFs are built using D-FF and inverter gates.

Modules
A module is the basic building block in Verilog. In Verilog, a module is declared by the keyword

module. A corresponding keyword endmodule must appear at the end of the module definition.

Each module must have a module-name, which is the identifier for the module, and a module-

terminal-list, which describes the input and output terminals of the module.

The Syntax is

Pa
ge
6

module<module-name> (<module-terminal-list>)

<module internals>

Endmodule

Example:

Consider T- FF. The module for T-FF is as shown below.

module T-FF (q, clock, reset);

.

.

<functionality of T-flip-flop>

endmodule

Internals of each module can be defined at four levels of abstraction, depending on the needs of the

design. They are

1. Behavioural or algorithmic level

2. Dataflow level

3. Gate level

4. Switch level

Behavioural or algorithmic level :

 This is the highest level of abstraction provided by Verilog HDL.

 A module can be implemented in terms of the desired design algorithm without considering

the hardware implementation details.

 It specifies the circuit in terms of its expected behaviour.

 Designing at this level is very similar to C programming.

Dataflow level
 At this level the module is designed by specifying the data flow.

 This design describes how data flows between hardware registers and how the data is

processed in the design

 This style is similar to logical equations.

 The specification is comprised of expressions made up of input signals and assigned to

outputs. .

Gate level (Structural level)

 The module is implemented in terms of logic gates and interconnections between these gates.

 It resembles a schematic drawing with components connected with signals.

Pa
ge
7

 A change in the value of any input signal of a component activates the component. If two or

more components are activated concurrently, they will perform their actions concurrently as

well.

 Since logic gate is most popular component, Verilog has a predefined set of logic gates

known as primitives. Any digital circuit can be built from these primitives.

Switch level

 This is the lowest level of abstraction in Verilog.

 A module can be implemented in terms of switches, storage nodes, and the interconnections

between them.

 Design at this level requires knowledge of switch-level implementation details.

Instances:
A module provides a template from which actual objects are created. When a module is invoked,

Verilog creates a unique object from the template. Each object has its own name, variables,

parameters and Input/output interface. The process of creating objects from a module template is

called instantiation, and the objects are called instances

{Explanation:

The difference between these two can be summed up as follows: A module position is a container in

which you can assign modules so they appear on the front end. A module instance is a single module,

injected directly into a specific place in the page}

Differences between modules and module instances:

Modules are the basic building blocks in Verilog. Modules are used in a design by instantiation.

An instance of a module has a unique identity and is different from other instances of the same

module. Each instance has an independent copy of the internals of the module

Components of a Simulation

Once a design block is completed, it must be tested. The functionality of the design block can be

tested by applying stimulus and checking results. Such a block is called the stimulus block . The

stimulus block is also commonly called a test bench.

There are two distinct components in a simulation:

 Stimulus block and

 . Design block

A stimulus block is used to test the design block. The stimulus block is usually the top-level block.

 There are two styles of stimulus application.

Pa
ge
8
In the first style, the stimulus block instantiates the design block and directly drives the signals in

the design block. The block diagram is as shown below.

The second style of applying stimulus is to instantiate both the stimulus and design blocks in

a top-level dummy module. The stimulus block interacts with the design block only through the

interface. This style of applying stimulus is shown below.

The function of top-level block is simply to instantiate the design and stimulus blocks.

Example:

Consider ripple carry counter. The design block and the stimulus block are defined. The stimulus is applied to

the design block and the outputs are monitored. The circuit is as shown below

Design Block

Let us consider top-down design methodology. First, the Verilog description of Ripple carry counter

which is the top-level design block is written.

Module ripple-carry-counter(q, clk, reset) ;

output [3:0]q;

input clk, reset

 Here the stimulus block becomes the

top-level block. It manipulates signals

clk and reset, and it checks and

displays output signal q

The stimulus module drives the

signals d-clk and d-reset, which are

connected to the signals clk and

reset in the design block. It also

checks and displays signal c-q,

which is connected to the signal q in

the design block

Pa
ge
9
T-FF tff0 (q[0] ,clk, reset);1`234

T-FF tff l (q[l] ,q[0], reset);

T-FF tff 2 (q[2] ,q[l], reset);

T-FF tff 3 (q[3] ,q[2], reset);

endmodule

In the above module, four instances of the module TFF (T-flip-flop) are used. Therefore, the

internals of the module T-FF must be defined.

module T-FF (q, clk, reset) ;

output q;

input clk, reset;

wire d;

D-FF dff0 (q, d, clk, reset);

notnl(d, q) ; // not is a Verilog-provided primitive. case sensitive

endmodule

Since T-FF instantiates D-FF, the internals of module D-FF must be defined.

// module D-FF with synchronous reset

module D-FF(q, d, clk, reset) ;

output q;

input d, clk, reset;

reg q;

always @ (posedge, reset or negedgeclk)

if (reset)

q = l'b0;

else
q = d;
endmodule

All modules have been defined down to the lowest-level leaf cells in the design methodology. The

design block is now complete.

Stimulus Block:

Now the stimulus block is written to check if the ripple carry counter design is functioning correctly.

In this case, the signals clk and reset are controlled so that the regular function of the ripple carry

counter and the asynchronous reset mechanism are both tested. The wave forms are as shown below.

Pa
ge
10

 Now the stimulus block is written to know how the design block is instantiated in the stimulus block

that will create the above waveforms

 Here the cycle time for clk is 10 units; the reset signal stays up from time 0 to 15 and then goes

up again from time 195 to 205. Output q counts from 0 to 15.

module stimulus;
reg clk;

reg reset;

wire [3:0] q;

// instantiate the design block

ripple-carry-counterrl (q, clk, reset);

// Control the clk signal that drives the design block.Cycle time = l0 initial

clk = l'b0; //set clk to 0

always

#5 clk = ~clk;

//toggle clk every 5 time units

// Control the reset signal that drives the design block

// reset is asserted from 0 to 20 and from 200 to 220 initial

begin

reset = l'bl;

#l5 reset = l'b0;

#l80 reset = l'bl;

#l0 reset = l'b0;

#20 $finish; //terminate the simulation

end

// Monitor the outputs

endmodule

Pa
ge
11

3. Basic concepts:

The digital circuits can be represented in textual form in Verilog. The code written in textual form is

called source code. The source code is created with the combinations of character and words which

are called KEYWORDS and SYNTAX / SEMANTICS. These are called Lexical tokens.

Combination of more than one lexical tokens forms LEXICAL CONVENTIOINS

LEXICAL CONVENTIOINS

Lexical tokens in Verilog HDL are given below.

 White space

 Comment

 Operator

 Number

 String

 Identifier

 Keyword

 White space (Blank spaces):

White space is a term used to represent the characters for spaces, tabs, newlines .White spaces

are used in stings which can be incorporated using double quotes (“). The semantics for white

spaces in the string is as shown below:

Escape string Character produced by escape string

\b Blank space

\n New line character

\t Tab character

\\ \ character

\” “ character

Comments:

There are two ways to write comments in Verilog. A single line comment starts with // and tells Verilog

compiler to treat everything after this point to the end of the line as a comment . A multiple-line comment

starts with /* and ends with */ and cannot be nested.

Comments are used to increase the readability of code. Comments are ignored by the simulator.

Example:

a = b &&c; // This is a one-line comment

/ * This is a multiple line

comment* /

/ * This is / * an illegal Binary operator – which worsl* / comment * /

Operators:

The operation which is to be performed is decided by operators. There are three kinds of operators

available in Verilog. They are

1. Unary operator – which works on single operands

Eg: a = ~ b; //~ is a unary operator. b is the operand

Pa
ge
12

2. Binary operator – which works on two operands

Eg: a = b &&c; // &&is a binary operator. b and c are operands

3. Ternary operator – which works on three operands. A question mark and a colon separate the

three targets of the operation.

Eg: a = b ?c :d; // ?: is a ternary operator. b, c and d are operands

Number Specification:

There are two types of number specification in Verilog:

 Sized and

 Unsized
Sized numbers:

Sized numbers are represented as <size>‘<base format><number>.

 Size is written only in decimal and specifies the number of bits in the number.

 Legal base formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal

('oor 'O).

 The number is specified as consecutive digits from 0, 1, 2,3,4,5, 6, 7, 8, 9, a, b, c, d, e, f. Only

a subset of these digits is legal for a particular base. Uppercase letters are legal for number

specification

Example:

4'bllll // This is a 4-bit binary number

l2'habc // This is a 12-bit hexadecimal number

16'd255 // This is a 16-bit decimal number.

Unsized numbers

Numbers that are specified without a <base format>specification are decimal numbers by default.

Numbers that are written without a <size> specification have a default number of bits of 32.

Example:

23456 // 23456 is a 32-bit decimal number by default

'hc3 // c3is a 32-bit hexadecimal number

'o21 // 21 is a 32-bit octal number

X or Z values:

Verilog has two symbols for unknown and high impedance values. An unknown value is denoted by

an X. A high impedance value is denoted by z.

Example:

12'h13x // 13x is a 12-bit hex number; 4 least significant bits unknown

6'hx //x is a 6-bit hex number

32'bz //z is a 32-bit high impedance number

Pa
ge
13
Negative numbers

 Negative numbers can be specified by putting a minus sign before the size for a constant

number.

 Negative numbers are stored as compliment two and the minus sign must be included before

the specification of size. [It is illegal to have a minus sign between <base format> and

<number>].

Example:

-10'd5 // 10 bit negative number stored as 2's complement of 5.

 -6' d3 // 6-bit negative number stored as 2's complement of 3

4'd -2 // Illegal specification

Underscore characters and question marks:

An underscore character "-" is allowed anywhere in a number except the first character.
Underscore characters are allowed only to improve readability of numbers and are ignored by
Verilog.

A question mark "?" is the Verilog HDL alternative for z when used in a number. The ?is
used to enhance readability in the casex and casez statements.
Example:

12'b1111_0000_1010// Use of underline characters for readability

4'b10?? // Equivalent of a 4'bl0zz

Strings

 A string is a sequence of characters that are enclosed by double quotes.

 The restriction on a string is that it must be contained on a single line, that is, without a

carriage return. It cannot be on multiple lines.

Example:

"Hello Verilog World" // is a string
'a / b" // is a string

Keywords and Identifiers:

 Keywords are special identifiers reserved to define the language constructs.

 Keywords are in lowercase.

Example: module, wire, assign, endmodule etc.,

Identifiers are names given to objects.

 Identifiers are Made up of alphanumeric characters, the underscore (_) and the dollar sign($)

 Case sensitive.

 Start with an alphabetic character or an underscore.

 They cannot start with a number or a $ sign
Example:

reg value; // reg is a keyword; value is an identifier

Pa
ge
14
input clk; // input is a keyword, clk is an identifier

Escaped Identifiers

 Escaped identifiers begin with the backslash (\) character and end with whitespace (space, tab,

or newline).

 All characters between backslash and whitespace are processed literally.

 Any printable ASCII character can be included in escaped identifiers.

Example:

Data Types:

A data type in Verilog is designed to represent the data storage and transmission. The 10 data types

used in Verilog are –

1. Value Set
2. Nets
3. Registers
4. Vectors
5. Numbers –Integer and Real

6. Simulation Time
7. Arrays
8. Memories
9. Parameters
10. Strings

Value Set

Verilog supports four values and eight strengths to model the functionality of real hardware. The four

value levels are

In addition to logic values,

strength levels are often used to

resolve which value should

appear on a net or gate output.

There are two types of strengths: drive strengths and charge strengths.

The drive strength types are - supply, strong, pull, weak, and highz strengths

The charge strength types are -large, medium and small strengths

Value
Level

Condition in Hardware Circuits

1 Logic one, true condition Logic

0 logic zero, false condition

X Unknown value

z High impedance, floating state

Pa
ge
15

Strength Level Type Degree

supply Driving strongest

strong Driving

pull Driving

Large Storage

Weak Driving

Medium Storage

small Storage

highz high impedance Weakest

2. If two signals of equal strengths are driven on a wire, the result is unknown.

Example:
If two signals of strength strong l and strong 0 conflicts, the result is an X.

Nets:
The nets variables represent the physical connection between structural entities. They do not store

values. They have the value of their drivers.

Example:

 Nets are declared with the keyword wire.

 A wire represents a physical wire in a circuit and is used to connect gates or modules. A wire

does not store its value.

 They are one-bit values except in vectors.

 The default value of a net is Z.

 nets not a keyword but represents a class of data types such as w i r e , wand, wor, tri, triand,

trior, trireg, etc.

Example:

wire a; // Declare net a for the above circuit

wire b,c; // Declare two wires b, c for the above circuit

Registers:

 Registers are data storage elements. They retain value until another value is placed onto them.

 Register is a variable that can hold a value.

 Unlike a net, a register does not need a driver.

When signals combine, their

strengths and values shall

determine the strength and

value of the resulting signal in

accordance with the principle.

1. If two signals of unequal
strengths are driven on a
wire, the stronger signal
prevails

Example: If two signals of
strength strongl and weak0 drive

 In the Figure net a is connected to the output of and gate gl. Net awill

continuously assume the value computed at the input of gate gl, which is

b & c

Pa
ge
16
 Verilog registers do not need a clock.

 Values of registers can be changed anytime in a simulation byassigning a new value to the

register.

 Register data types are commonly declared by the keyword reg.

 The default value for a reg data type is X.

Example:

reg reset;
initial
begin
reset = l'bl;
#l00 reset = l'b0;
end

Vectors

Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not specified,

the default is scalar (l-bit).

Example:

wire a; // scalar net variable, default

wire [7:0] bus; // 8-bit bus

The left number in the squared brackets is always the most significant bit of the vector.

Integer, Real and Time Register Data Types

Integer

 An integer is a variable data type that stores the value until next assignment.

 Integers are declared by the keyword integer. The width for an integershould be at least 32 bits.

 Registers declared as data type reg store values as unsigned quantities, whereas integers

store values as signed quantities.

Real

 Real number constants and real register data types are declared with the keyword real.

 They can be specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is

3 X 106).

 Real numbers cannot have a range declaration and their default value is 0. When a real value is

assigned to an integer, the real number is rounded off to the nearest integer.

Time

 Verilog simulation is done with respect to simulation time.

 A time variable is declared with the keyword time.

 The width for time register data types is at least 64 bits.

Arrays

Pa
ge
17
 Arrays are used in Verilog for reg, integer, time and vector register data types. Arrays are not

used for real variables.

 Each element of the array can be used as a scalar or vector net.

 Arrays are accessed by

 <array-name> [<subscript>l.

 Multidimensional arrays are not permitted in Verilog.

 The difference between a vector and an array is - vector is a single element that is n-bits

wide but arrays are multiple elements that are l-bit or n-bits wide.

Example:

integer count[0:7]; //an array of 8 count variables

Memories

 In digital simulation, register files, RAMS, and ROMs are modeled .

 Memories are modeled in Verilog as one dimensional array of registers.

 Each element of the array is known as a word.

 Each word can be one or more bits.

 Depth of memory should be declared by specifying a range following the memory identifier

Example: the memory reg [5:0]

Parameters

 Constants in Verilog are defined in a module by the keyword parameter.

 Parameters cannot be used as variables.

 Module instances can be altered by changing the value of a parameter.

Example:

parameter port-id = 5; //Defines a constant port-id

parameter cache_line_width = 256; //constant defines width of cache line

Strings

 In Verilog, string literals are just packed arrays of bits (or a bit-vector).

 Strings are the characters stored in reg data type.

 The width of the register variables must be large enough to hold the string.

 Each character in the string takes up 8 bits (1 byte).

 If the width of the register is greater than the size of the string, Verilog fills bits to the left of the

string with zeros.

 If the register width is smaller than the string width, Verilog truncates the leftmost bits of the

string.

Example:

reg [8*18:1] string-value;

Pa
ge
18
//Declare a variable that is l8 bytes wide, each 8 bit wide.

System Tasks

Verilog contains the pre-defined system tasks and functions which provide common operations .All

system tasks appear in the form $<keyword>. Operations such as displaying onthe screen, monitoring

values, stopping, and finishing are done by system tasks.

Task Function

To display on screen $display

For monitoring values $monitor

Stopping and finishing simulation $time

Terminate simulation $finish

Compiler Directives

All compiler directives are defined by using the ' <keyword>construct. Compiler directives begin

with "`" an accent grave. The compiler directives tell the compiler the method of processing its

input. Some of the complier directives are-

1. `define

2. `include

The 'define directive is used to define text macros in Verilog. The defined constants or text macros

are used in the Verilog code by preceding them with a ' (back tick).

Example:

//define a text macro that defines default word size

//Used as 'WORD-SIZE in the code

 'define WORD-SIZE 32

'define WORD-REG reg [31:0]

The ' include directive includes the entire contents of Verilog source file in another Verilog file

during compilation. It is used to include header files, which contain global or commonly used

definitions

Eg:

// Include the file header.v, which contains declarations in the

// main verilog file design.v.

'include header.v

Pa
ge
19

4. Modules and Ports

A module is a block of Verilog code that implements certain functionality. The module name, port

list, port declaration, and optional parameters must appear first in a module definition. Port list and

port declarations are present only if the module has a ports to interact with the external environment.

The block diagram of components in a Verilog module is as shown below.

These components can be in any order and at any place in the module definition. The endmodule

statement must always come last in a module definition. All components except module, module

name and endmodule are optional and can be mixed and matched as per design needs. Verilog allows

multiple modules to be defined in a single file. The modules can be defined in any order in the file.

Example:

Consider the S R latch as shown below.

// Module name and port list
// SR-latch module

module SR-latch (Q, Qbar, Sbar, Rbar) ;

//Port declarations

*The five components within

a module are –

1. variable declarations,

2. dataflow statements,

3. instantiation of lower

modules,

4. behavioral blocks and

5. Tasks or functions.

The SR latch has S and R as the input ports and Q and Qbaras the
output ports.
The SR latch and its stimulus can be modeled as shown in Example

Pa
ge
20

output Q, Qbar;

input Sbar, Rbar;

// Instantiate lower-level modules

nandnl (Q, Sbar, Qbar) ;

nand n2 (Qbar, Rbar, Q) ;

// endmodule statement
endmodule

The S R latch stimulus can be modeled as shown

// Module name and port list(No ports are there)

// Stimulus module

module Top;

// Declarations of wire, req, and other variables

wire q, qbar;
reg set, reset;

// Instantiate lower-level modules
// In this case, instantiate SR-latch
// Feed inverted set and reset signals to the SR latch

SR-latch ml(q, qbar, -set, -reset);
// Behavioral block, initial

initial
begin
$monitor($time, " set = %b, reset= %b, q= %b\nU,set,reset,q);
set= 0; reset = 0;
#5 reset = 1;
#5 reset = 0;
#5 set = 1;
end

// endmodule statement

endmodule

[Notice the following characteristics about the modules defined above.

In the SR latch definition above , notice that all components described in Figure need not be present

in a module. We do not find variable declarations, dataflow (assign) statements, or behavioral blocks

(always or initial).

 However, the stimulus block for the SR latch contains module name, wire, reg, and variable

declarations, instantiation of lower level modules, behavioral block (initial), and endmodule

statement but does not contain port list, port declarations, and data flow (assign) statements.

Pa
ge
21
 Thus, all parts except module, module name, and endmodule are optional and can be mixed and

matched as per design needs.]

Ports:

Port is an essential component of the Verilog module. Ports are used to communicate for a module

with the external world through input and output. Ports define the interface of a Verilog module to

the outside world.

Example:

The input output pins of IC are its ports

List of Ports

A module definition contains an optional list of ports.

Example:

Consider a 4-bit full adder that is instantiated inside a top-level module Top. The diagram for the
input/ output ports is shown in Figure.

The module fulladd4 takes input on ports a, b, and c-in and produces an output on ports sum and

c-out. Thus, module fulladd4 performs an addition for its environment. The module Top is a top-

level module in the simulation and does not need to pass signals to or receive signals from the

environment. Thus, it does not have a list of ports.

The module names and port lists for both module declarations in Verilog are as shown below.

Example:

module fulladd4(sum, c-out, a, b, c-in); //module with a list ofports

module Top; // No list of ports, top-level module in simulation

Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared as follows:

Verilog Keyword Type of Port
input Input port
output Output port

Pa
ge
22

inout Bidirectional port

Example:

Input list of ports/terminals ; Input s,r; Input[7:0] s,r;

Output list of ports/terminals ;Output y,z; Output [3:0] y,z

Inout list of ports/terminals ;Inout a,b;Inpit[15:0] a,b;

Example1 : 4 bit full adder
module fulladd4(sum, c-out, a, b, c-in);
//Begin port declarations section
output [3 : 0] sum; // 4 bit full adder hence the vector [3: 0] which is 4 bit
output c-out;
input [3:0] a, b;
input c-in;
.....
//End port declarations section
Endmodule
All ports declarations are implicitly declared as w i r e in Verilog. Thus, if a port is intended to be a

wire, it is sufficient to declare it as output, input, or inout.

However, if output ports hold their value, they must be declared as reg.

Example2 : D Flip- flop
module DFF(q, d, clk, reset) ;
output q;
reg q; // Output port q holds value; therefore it is declared as reg.
input d, clk, reset;
...
...
endmodule

All port declarations can be done in module declaration as shown below.

module full_add4(output reg[3:0] sum; output reg cout; input [3:0] a,b; input cin);

Port Connection Rules

A port consists of two units - one unit that is internal to the module and another that is external to

the module

The block diagram of the rules that are governing port connections when modules are instantiated

within other modules are summarized below.

Pa
ge
23

Outputs
Internally, outputs ports can be of the type reg or net. Externally, outputs must always be connected

to a net.

Inouts

Internally, inout ports must always be of the type net. Externally, inout ports must always be

connected to a net.

Width matching

It is legal to connect internal and external items of different sizes when making inter-module port

connections. A warning is issued when the widths do not match.

Unconnected ports

Verilog allows ports to remain unconnected. A port can remain unconnected by instantiating a

module as shown below.

fulladd4 fa0 (SUM, , A, B, C-IN); // Output port c-out is unconnected.

Example of illegal port connection

module Top;
//Declare connection variables
reg [3:O]A,B;
reg C-IN;
reg [3:0] SUM; // this is the output. The output should be always net or wire.

//Hence illegal
wire C-OUT;

Connecting Ports to External Signals

There are two methods of making connections between signals specified in the module instantiation

and the ports in a module definition. They are

 Connecting by ordered list

 Connecting ports by name

Inputs
Internally, input ports must always be of the

type net. Externally, the inputs can be

connected to a variable which is a reg or a

net.

Pa
ge
24
Connecting by ordered list

In this method the signals to be connected must appear in the module instantiation in the same order

as the ports in the port list in the module definition.

Example:

Consider 4 bit full adder with Top module. The Verilog code is

module Top;
//Declare connection variables
reg [3:O]A,B;
reg C-IN;
wire [3:0] SUM;
wire C-OUT;

.....
<stimulus>
....
Endmodule

consider the module fulladd4 To connect signals in module Top by ordered list, the external signals

SUM, C-OUT, A, B, and CJN appear in exactly the same order as the ports sum, c-out, a, b, and c-in

in module definition of fulladd4.

Connecting ports by name

Verilog provides the capability to connect external signals to ports by the port names.

Example: consider Full – adder 4

module fulladd4 (sum, c-out, a, b, c-in) ;
output [3 : 01 sum;
output c-cout;
input [3:0] a, b;
input c-in;
...
<module internals>
...

module fulladd4 (sum, c-out, a, b, c-in) ;

output [3 : 01 sum;

output c-out;

input [3:0] a, b;

input c-in;

...

<module internals>

...
endmodule

Pa
ge
25

Stimulus
(Root level)

m1
(SR_latch)

n1
(nand)

n2
(nand)

Q, Qbar
S,R

(signals)

q, qbar
set, reset

(variables)

endmodule

module Top;
//Declare connection variables
reg [3:O]A,B;
reg C-IN;
wire [3:0] SUM;
wire C-OUT;

.....
<stimulus>
....

Endmodule

fulladd4 fa1 (.c-out(C-OUT), .sum(SUM), .b(B), .c-in(C-IN), .a(A) ,);

Hierarchical Names

Every module instance, signal, or variable is defined with an identifier. Hierarchical name

referencing allows to denote every identifier in the design hierarchy with a unique name. A

hierarchical name is a list of identifiers separated by dots (" ."). The advantages of mentioning the

hierarchical name is any identifier can be addressed from any place in the design by simply

specifying the complete hierarchical name of that identifier.

The top-level module is called the root module because it is not instantiate. To assign a unique name

to an identifier, start from the top-level module and trace the path along the design hierarchy to the

desired identifier anywhere.

Example:

Consider S R latch. The design hierarchy is shown in Figure

.

Example:

For this simulation, stimulus is the top-
level module. Since the top-level
module is not instantiated anywhere, it
is called the root module. The
identifiers defined in this module are
q, qbar, set, and reset. The root
module instantiates ml, which is a
module of type SR-latch. The module
m1 instantiates nand gates nl and n2.
Q, Qbar, S, and Rare port signals in
instance ml. Hierarchical name
referencing assigns a unique name to
each identifier

Pa
ge
26

Stimulus
(Root level)

m1
(SR_latch)

n1
(nand)

n2
(nand)

Q, Qbar
S,R

(signals)

q, qbar
set, reset

(variables)

stimulus
stimulus.qbar
stimulus.reset
 stimulus.ml.Q
stimulus.ml.S
 stimulus.nl

stimulus.q
stimulus.set
 stimu1us.ml.Qbar
stimu1us.ml.R
 stimulus.n2

Each identifier in the design is uniquely specified by its hierarchical path name

Behavioral Modeling

In behavioural modelling the digital design is carried out in terms of algorithm and its performance.

Structured Procedures

Structured procedures provide a means of modeling blocks of procedural statements. There are two

structured procedure statements in Verilog: always and initial

initial Statement

All statements inside an initial statement constitute an initial block. An initial block starts at time 0,

executes exactly once during a simulation and then does not execute again. If there are multiple

initial blocks, each block starts to execute concurrently at time 0. Each block finishes execution

independently of other blocks

Example:

module stimulus;

reg x,y, a,b, m;

initial

m = l’b0 //single statement; does not need to be grouped

initial

begin

#5 c //multiple statements; need to be grouped

#25 b = l’b0;

end

initial

begin

 #l0 X = l’b0;

#25 y = l'bl;

end

initial

 #50 $finish;

endmodule
Time Statement executed

0 m = l’b0 ;

5 a = l’b0 ;

10 x = l'b0

30 b = l'b0;

35 y = l'bl;

50 $finish;

always Statement

All behavioral statements inside an always statement constitute an always block. The always

statement starts at time 0 and executes the statements in the always block continuously in a looping

fashion. This statement is used to model a block of activity that is repeated continuously in a digital

circuit

Example:

Consider a clock generator module that toggles the clock signal every half cycle

module clock-gen;

reg clock

//Initialize clock at time zero

initial

clock = l'b0;

//Toggle clock every half-cycle (time period = 20)

always

#l0 clock = ~clock;

initial

#l000 $finish;

endmodule

In the above Example the always statement starts at time 0 and executes the statement clock =

~clock every 10 time units. Notice that the initialization of clock has to be done inside a separate

initial statement. Also, the simulation must be halted inside an initial statement. If there is no $

stop or $finish statement to halt the simulation, the clock generator will run forever.

Procedural Assignments

Procedural assignments update values of reg, integer, real, or time variables. The value placed on a

variable will remain unchanged until another procedural assignment updates the variable with a

different value. The syntax for the simplest form of procedural assignment is

<assignment> : : = < 1value> = <expression>

There are two types of procedural assignment statements: blocking and nonblocking.

Blocking assignments

Verilog supports blocking and non-blocking assignments statements within the always block with

their different behaviours.

 Blocking assignment statements are executed in the order they are specified in a sequential

block.

 A blocking assignment will not block execution of statements that follow in a parallel block.

 The ‘ = ‘ operator is used to specify the Blocking assignments .

Example:

reg x, y, z;

reg [15: 0] reg-a, reg-b;

integer count;

initial

begin

x=0; y=l; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg-a = 16'b0; reg-b = reg-a; //initialize vectors

#l5 reg-a[2] = lrbl; //Bit select assignment with delay

#l0 reg-b[15:13] = (x, y, z) //Assign result of concatenation to part select of a vector

count = count + 1; //Assignment to an integer (increment)

end

 In the above example the statement y = 1 is executed only after x = 0 is executed.

 The behaviour in a particular block is sequential in a begin-end block

 The statement count = count + 1 is executed last.

The simulation times at which the statements are executed are as follows:

 All statements x = 0 through reg-b = reg-a are executed at time 0

 Statement regal21 = 0 at time = 15

 Statement reg-b[15:13] = {x, y, z) at time = 25

 Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be

executed at time = 25 units

Nonblocking Assignments

Non-blocking assignment statements are allowed to be scheduled without blocking the execution of

the following statements and is specified by a (<=) symbol.

Example:

reg x, y, z;

reg [15:0] reg-a, reg-b;

integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x= 0; y = 1; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg-a = 16'b0; reg-b = reg-a; //Initialize vectors

reg-a[2] <= #l5 l'bl; //Bit select assignment with delay

reg-b[15: 13] <= #l0 {x, y, z); //Assign result of concatenation

//to part select of a vector

count <= count + 1; //Assignment to an integer (increment)

end

The statements x = 0 through reg-b = reg-a are executed sequentially at time 0.

The three nonblocking assignments are processed at the same simulation time.

1. reg-a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15)

2. reg-b[15:13]= {x, y, z} is scheduled to execute after 10 time units (i.e., time = 10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0)

Application of nonblocking assignments

They are used as a method to model several concurrent data transfers that take place after a

common event.

Consider the following example where three concurrent data transfers take place at the positive

edge of clock.

Example:

always @(posedge clock)

begin

regl <= #l i n l ;

reg2 <= @(negedge clock) in2 A in3;

reg3 <= #l regl; //The old value of regl

end

At each positive edge of clock, the following sequence takes place for the nonblocking

assignments.

1. A read operation is performed on each right-hand-side variable, inl, in2, in3 and regl, at the

positive edge of clock. The right-hand-side expressions are evaluated, and the results are stored

internally in the simulator.

2. The write operations to the left-hand-side variables are scheduled to be executed at the time

specified by the intra-assignment delay in each assignment, that is, schedule "write" to reg l after 1

time unit, to reg2 at the next negative edge of clock, and to reg3 after 1 time unit.

3. The write operations are executed at the scheduled time steps. The order in which the write

operations are executed is not important because the internally stored right-hand-side expression

values are used to assign to the left-hand-side values. For example, note that reg3 is assigned the

old value

Thus, the final values of regl, reg2, and reg3 are not dependent on the order in which the

assignments are processed.

To understand the read and write operations further, consider the following example, which

is intended to swap the values of registers a and b at each positive edge of clock, using two

concurrent always blocks

Example:

//Illustration 1: Two concurrent always blocks with blocking statements

always @(posedge clock)

a = b;

always @(posedge clock)

b = a;

//Illustration 2: Two concurrent always blocks with nonblocking statements

always @(posedge clock)

a <= b;

always @(posedge clock)

b <= a;

In the above example, in illustration 1, there is a race condition when blocking statements are used.

Either a = b would be executed before b = a, or vice versa, depending on the simulator

implementation. Thus, values of registers a and b will not be swapped. Instead, both registers will

get the same value (previous value of a or b), based on the Verilog simulator implementation.

However, nonblocking statements used in illustration 2 eliminate the race condition. At the positive

edge of clock, the values of all right-hand-side variables are "read," and the right-hand-side

expressions are evaluated and stored in temporary variables. During the write operation, the values

stored in the temporary variables are assigned to the left-hand-side variables. Separating the read

and write operations ensures that the values of registers a and b are swapped correctly, regardless of

the order in which the write operations are performed.

Conditional Statements:

Conditional statements are used for making decisions based upon certain conditions. These

conditions are used to decide whether or not a statement should be executed. Keywords i f and else

are used for conditional statements.

There are three types of conditional statements.

1. if statement

2. if – else statement

3. if-else- if statement.

1. In if statement - Statement executes or does not execute.

Syntax:

if (<expression>) true-statement ;

Example:

If (!lock) buffer = data;
If (enab1e) out = in;

2. In if – else statement -either true-statement or false-statement is evaluated
Syntax :

if (<expression>) true-statement ; else false-statement ;

Example:

if (reset)

begin
 dff <= 0;

 end
else
 begin
 dff <= din;

 end

3. In if-else- if statement - Choice of multiple statements. Only one is executed.

Syntax:

if (<expressionl>) true-statement1 ;

else if (<expression2>) true-statement2 ;

else if (cexpression3>) true-statement3 ;

else default-statement ;

Example:

if (alu-control = = 0)

l y=x + z;

else if(a1u-control = = 1)

y=x - z;

else if (a1u-control = = 2)

y=x*z;

else

$display ("Invalid ALU control signal");

Multiway Branching

The nested if-else-if can become unwieldy if there are too many alternatives. A shortcut to achieve

the same result is to use the case statement.

The keywords case, endcase, and default are used in the case statement

Syntax:

case (expression)
alternativel: statement l;
alternative2: statement 2;
alternative3: statement 3;
...
...
Default: default-statement;
endcase

1. Each of statement 1, statement2 ..., default-statement can be a single statement or a block of

multiple statements.

2. The expression is compared to the alternatives in the order they are written.

3. For the first alternative that matches, the corresponding statement or block is executed.

4. If none of the alternatives match, the default-statement is executed.

Example:

reg [1:0] alu-control;
...
...
case (alu-control)
2'd0 : y = x + z;
2'dl : y = x - z;
2'd2 : y = x* z;
default : $display("Inva1id ALU control signal");
endcase

4 : 1 Multiplexer

module mux4-to-l (out, i0, il, i2, i3, sl, s0);

output out;

input i0, il, i2, i3;

input sl, S0;

reg out;

always @(sl or S0 or i0 or il or i2 or i3)

case ({sl, s0))

2'd0 : out = i0;

2'dl : out = il;

2'd2 : out = i2;

2'd3 : out = i3;

default: $display("Invalid control signals");

endcase

endmodule

1 : 4 Demultiplexer

module demultiplexerl-to-4 (out0, outl, out2, out3, in, sl, s0);

output out0, outl, out2, out3;

reg out0, outl, out2, out3;

input in;

input sl, s0;

ilways @(sl or s0 or in)

case ({sl, s0))

2 'b00 :

begin: out0 = in; outl = l'bz; out2 = l'bz; out3 = l'bz; end

2'b0l : begin out0 = l'bz; outl = in; out2 = l'bz; out3 = l'bz; end

2'bl0 : begin out0 = l'bz; outl = l'bz; out2 = in; out3 = l'bz; end

2'bll : begin out0 = l'bz; outl = l'bz; out2 = l'bz; out3 = in; end

2'bx0, 2'bxl, 2'bxz, 2'bxx, 2'bOx, 2'blx, 2'bzx :

begin

out0 = l'bx; outl = l'bx; out2 = l'bx; out3 = l'bx;

end

2'bz0, 2'bzl, 2'bzz, 2'bOz, 2'blz :

begin

ou0 = l'bz; outl = l'bz; out2 = l'bz; out3 = l'bz;

end

default: $display("Unspecified control signals");

end case

endmodule

Account for unknown signals on select.
 If any select signal is then outputs are x.
 If any select signal is z, outputs are z.
 If one is x and the other is z, x gets higher priority.

casex, casez Keywords

There are two variations of the case statement. They are denoted by keywords, casex and casez.

casez treats all z values in the case alternatives or the case expression as don't cares. All bit
positions with z can also represented by ? in that position.

casex treats all x and z values in the case item or the case expression as don't cares.

The use of casex and casez allows comparison of only non-X or -z positions in the case expression
and the case alternatives.
Example:

reg [3 : 0] encoding;

integer state;

casex (encoding) //logic value X represents a don't care bit

4'blxxx : next-state = 3;

4'bxlxx : next-state = 2;

4'bxxlx : next-state = 1;

4'bxxxl : next-state = 0;

default : next-state = 0;

endcase

Thus, an input encoding = 4'bl0xz would cause next-state = 3 to be executed.

Loops

There are four types of looping statements

 while

 for

 repeat and

 Forever

While Loop

The keyword while is used to specify this loop. The while loop executes until the while-

expression becomes false. If multiple statements are to be executed in the loop, they must be

grouped typically using keywords begin and end.

Example:

Example 1: Increment count from 0 to 127. Exit at count 128.

integer count;

initial

begin

count = 0;

while (count < 128) //Execute loop till count is 127. Exit at count 128

begin

 $display ("Count = %d" , count) ;

count = count + 1;

end

end

Example 2: Find the first bit with a value 1 in flag

'define TRUE l'bl';

'define FALSE l'b0;

reg [15:0] flag;

integer i //integer to keep count

reg continue;

initial

begin

flag = 16'b 0010~0000~0000~0000;

i = 0;

continue = 'TRUE;

while((i < 16) && continue) //Multiple conditions using operators.

begin

if (flag [i])

begin

$display("Encountered a TRUE bit at element number %d", i);

continue = 'FALSE;

end

i=i+l;

end

end

For Loop

The keyword for is used to specify this loop. The for loop contains three parts:

 An initial condition

 A check to see if the terminating condition is true

 A procedural assignment to change value of the control variable

Example:

integer count;

initial

for (count=O; count < 128; count = count + 1)

$display("Count = %do, count);

for loops can also be used to initialize an array or memory.

Example:

'define MAX-STATES 32

integer state [O: 'MAX-STATES-l]; //Integer array state with elements 0: 31

integer i;

initial

begin

for(i = 0; i < 32; i = i + 2) //initialize all even locations with 0

state[il = 0;

for(i = 1; i < 32; i = i + 2) //initialize all odd locations with 1

state [i l = 1;

end

Repeat Loop

The keyword repeat is used for this loop. The repeat construct executes the loop a fixed number of

times. A repeat construct cannot be used to loop on a general logical expression. A repeat

construct must contain a number, which can be a constant, a variable or a signal value.

Example:

//Example1 : incrernent and display count from 0 to 127

integer count;

initial

begin

count = 0;

repeat (128)

begin

$display("Count = %d", count);

count = count + 1;

end

end

// Example 2 : Data buffer module

//After it receives a data-start signal. Reads data for next 8 cycles.

parameter cycles = 8;

input data-start;

input [15:01 data;

input clock;

reg [15:0] buffer [0:7];

integer i;

always @(posedge clock)

begin

if(data-start) //data start signal is true

begin

i = 0;

repeat(cyc1es) //Store data at the posedge of next 8 clock cycles

begin

@(posedge clock) buffer[i] = data; //waits till next posedge to latch data

i=i+l;

end

end

end

endmodule

Forever loop

The keyword forever is used to express this loop. The loop does not contain any expression and

executes forever until the $finish task is encountered. The loop is equivalent to a while loop with

an expression that always evaluates to true, A forever loop can be exited by use of the disable

statement.

//Example 1: Clock generation

//Use forever loop instead of always block

reg clock;

initial

begin

clock = l'bO;

forever #l0 clock = -clock; //Clock with period of 20 unit

end

//Example 2: Synchronize two register values at every positive edge of clock

reg clock;

reg x y;

initial

forever @(posedge clock) x = y;

Dataflow Modeling

Dataflow modeling describes hardware in terms of the flow of data from input to output.

Continuous Assignment

The continuous assignment statement is the main construct of dataflow modeling and is used to assign
value to the net. It starts with the keyword assign.

General syntax is:

<continuous-assign> : : = assign <drive-strength>?<delay>? <list-of-assignments>;

Continuous assignments have the following characteristics.

 Continuous assignments are always active. That is the LHS net value changes as soon as the

value of any operand in the RHS changes.

 The LHS of an assignment should be either scalar or vector nets or a concatenation of both.

Registers are not applicable on the LHS.

 The RHS of the assignment can be register, net, or function calls of scalar or vector type.

 Delays can be specified.

Examples of Continuous Assignment
1. // Continuous assign. out is a net. il and i2 are nets

assign out = il & i2;

2. // Continuous assign for vector nets. addr is a 16-bit vector net

assign addr[l5:0] = addrl_bits[l5:0] ^ addr2_bits[l5:0];

3. // Concatenation. Left-hand side is a concatenation of a scalar

assign {c-out, sum[3:0]) = a[3:0] + b[3:01 + c-in;

Implicit Continuous Assignment

Instead of declaring a net and then writing a continuous assignment on the net, a continuous

assignment can be placed on a net when it is declared.

Example:

//Regular continuous assignment

wire out;

assign out = in1 & in2;

//Same effect is achieved by an implicit continuous assignment

wire out = in1 & in2;

Delays

Three ways of specifying delays in continuous assignment statements are

1. Regular assignment delay,
2. implicit continuous assignment delay, and
3. net declaration delay.

10 20 30 60 70 80 85

In1

In2

out

Time

Regular Assignment Delay

A delay value in the continuous assignment statement is assigned first. The delay value is specified

after the keyword assign.

Example:

assign #10 out = in1 & in2; // Delay in a continuous assign

 Any change in values of in1 or in2 will result in a delay of 10 time units before recomputation

of the expression in1 & in2, and the result will be assigned to out.

 If in1 or in2 changes value again before 10 time units when the result propagates to out, the

values of in1 and in2 at the time of recomputation are considered.

This property is called inertial delay. An input pulse that is shorter than the delay of the assignment

statement does not propagate to the output.

Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay and an

assignment on the net.

Example:

wire #l0 out = in1 & in2;

//same as
wire out;
assign #l0 out = in1 & in2;

Expressions, Operators, and Operands:

Expressions:
Expressions are constructs that combine operators and operands to produce a result.

Examples:

 a&b

 addr1[20:17] + addr2[20:17]
 in1 | in2

Operands:

Operands can be any one of the data types. They can be constants, integers, real numbers, nets,

registers, times, bit-select etc.,

Example:

1. integer count, final-count;
final-count = count + 1

2. real a, b, c;
 c = a - b; etc.,

Operators

Verilog has Ten different types of operators. They are

1. Arithmetic

2. Logical

3. Relational

4. Equality

5. Bitwise logical

6. Reduction

7. Shift operators

8. Concatenation

9. Replication

10. Conditional

1. Arithmetic Operators

There are two types of arithmetic operators:

 binary and

 Unary.

Binary arithmetic operators are

1. Multiply (*),

2. divide (/),

3. add (+),

4. subtract (-) and

5. modulus (%).

If any operand bit has a value x, then the result of the entire expression is x.

Example:

in1 = 4'bl0lx;
in2 = 4'bl0l0;
sum = in1 + in2; // sum will be evaluated to the value 4'bx

Modulus operators produce the remainder from the division of two numbers.

Example:

13 % 3 // Evaluates to 1
16 % 4 // Evaluates to 0

Example:

 If A = 4'b00ll; B = 4'b0l00; D = 6; E = 4; determine

a) A * B (Ans: 4'bll00)
b) D / E (Ans: Evaluates to 1)
c) A + B (Ans: 4'b0lll)

d) B – A (Ans: 4'b000l)

-7 % 2 // Evaluates to -1, takes sign of the first operand
7 % -2 // Evaluates to +l, takes sign of the first operand

Unary operators
The operators + and - can also work as unary operators. They are used to specify the positive or

negative sign of the operand

Example:

-4 // Negative 4

+5 // Positive 5

2. Logical Operators

Logical operators are logical-and (&&), logical-or (| |) and logical-not (!). Operators && and

 | | are binary operators. Operator ! is a unary operator.

Logical operators follow the following conditions –

 Logical operators always evaluate to a l-bit value, 0 (false), 1 (true), or X

 If an operand is not equal to zero, it is equivalent to a logical 1 (true condition). If it is equal to

zero, it is equivalent to a logical 0 (false condition). If any operand bit is X or z, it is equivalent

to X (ambiguous condition).

Example:

I. A = 4’b0011; B = 4’b0000;

a) A && B // Evaluates to 0.

b) A || B // Evaluates to 1.

c) ! A / / Evaluates to 0.

d) !B// Evaluates to 1

II. A = 2'b0x; B = 2'bl0;

A && B // Evaluates to X.

III. (a = = 2) && (b = = 3) // Evaluates to 1 if both a = = 2 and b = = 3 are true.

// Evaluates to 0 if either is false.

3. Relational Operators

Relational operators are -

 greater-than (>),

 less-than (<)

 greater-than-or-equal-to (>=) and

 less-than-or-equal-to (<=)

Example:

 If A=4, B=3

 X = 4'b1010, Y = 4'b1101, Z = 4'blxxx then evaluate

a) A <= B // Evaluates to a logical 0

b) A > B // Evaluates to a logical 1

c) Y >= X // Evaluates to a logical 1

d) Y < Z // Evaluates to an X

4. Equality Operators

Equality operators are logical equality (==), logical inequality (!= =),case equality (===), and case

inequality (!= =) When used in an expression, equality operators return logical value 1 if true, 0 if

false. These operators compare the two operands bit by bit, with zero filling if the operands are of

unequal length.

Expression Description Possible Logical

Value

a == b a equal to b, result unknown if X or z in a or b 0, 1, X

a ! = b a not equal to b, result unknown if X or z in a or b 0, 1, X

a = = = b a equal to b, including X and z 0, 1

a!== b a not equal to b, including X and z 0, 1

 Problems:

A = 4 , B = 3

X = 4’b1010 ; Y = 4’b1011;

Z = 4’b1xxz ; M = 4’b1xxz ; N = 4’b1xxx;

A == B // Results in logical 0

X != Y // Results in logical 1

X == Z // Results in X

Z === M //~esults in logical l (all bits match, including X and z)

z === N //~esults in logical 0 (least significant bit does not match)

M !== N // Results in logical 1

5. Bitwise Operators

Bitwise operators are
 negation (~),

 and(&),

 or (|)

 xor (^)

 xnor (^ ~ , ~^)).

Bitwise operators perform a bit-by-bit operation on two operands. They take each bit in one operand

and perform the operation with the corresponding bit in the other operand. If one operand is shorter

than the other, it will be bit extended with zeros to match the length of the longer operand.

Example:

X = 4’ b1010; Y = 4’ b1101; Z = 4’ b10x1;

~X // Negation. Result is 4'b0l0l
X & Y // Bitwise and. Result is 4'bl000
X | Y // Bitwise or. Result is 4'bllll
X ^ Y // Bitwise xor. Result is 4'b0lll
X ^~ Y // Bitwise xnor. Result is 4'bl000
X & Z // Result is 4'bl0x0

6. Reduction Operators

Reduction operators are

and (&),

nand(~ &),

or (|),

nor (~ |),

xor (^), and

xnor (~ ^).

Reduction operators take only one operand. Reduction operators perform a bitwise operation on a

single vector operand and yield a l-bit result.

Example:

X = 4’ b1010

&X //Equivalent to 1 & 0 & 1 & 0. Results in l'b0

 |X //equivalent to 1 | 0 | 1 | 0. Results in l'bl

^ X //Equivalent to 1 ^ 0 A 1 ^ 0. Results in l'b0

7. Shift Operators

Shift operators are
 right shift (>>) and
 left shift (<<).

 These operators shift a vector operand to the right or the left by a specified number of bits

Example:
X = 4’b 1100

Y = X >> l; //Y is 4'b0ll0.Shift right 1 bit.0 is filled in MSB position

Y = X << 1; //Y is 4'bl000.Shift left 1 bit.0 filled in LSB position.

Y = X << 2; //Y is 4'b0000.Shift left 2 bits.

8. Concatenation Operator

The concatenation operator ({,) provides a mechanism to append multiple operands. The operands

must be sized. Concatenations are expressed as operands within braces, with commas separating the

operands.

Example:

 If A = l'bl, B = 2'b00, C = 2'b10, D = 3'bll0

Then what is

Y = {B , C} // Result Y is 4'b00l0

Y = {A , B , C , D , 3'b00l) // Result Y is 11'b10010110001

Y = {A , B[0], C[1] 1} // Result Y is 3'bl0l

9. Replication Operator

Repetitive concatenation of the same number can be expressed by using a replication constant. A

replication constant specifies how many times to replicate the number inside the brackets ({ }).

Example:

Let reg A;

reg [1:0] B, C;

reg [2:0] D;

A = l'bl; B = 2'b00; C = 2'bl0; D = 3'bll0;

Y = { 4{A) } // Result Y is 4'bllll

Y = { 4{A} , 2{B} } // Result Y is 8'b11110000

Y = { 4{A} , 2{B} , C } // Result Y is 10'b1111000010

10. Conditional Operator

The conditional operator(? :) takes three operands.

Usage: condition-expr ? true-expr : false-expr ;

The condition expression (condition-expr) is first evaluated.

 If the result is true (logical 1),then the true-expr is evaluated.

 If the result is false (logical 0), then the false-expr is evaluated.

 If the result is X (ambiguous), then both true-expr and false-expr are evaluated and their results

are compared, bit by bit, to return for each bit position an X if the bits are different and the

value of the bits if they are the same

Conditional operations can be nested. Each true-expr or false-expr can itself be a conditional

operation.

Example:

Consider 4 – to – 1 multiplexer.

Let (A==3) and control are the two select signals of 4-to-1 multiplexer with n, m, y, x as the inputs and

out as the output signal.

 Then assign out = (A == 3) ? (control ? x : y): (control ? m : n) ;

Example:

Write the Verilog code for 4-to-1 Multiplexer, Using Conditional Operators

module multiplexer4-to-l (out, i0, il, i2, i3, sl, s0);

output out;

input i0, il, i2, i3;

input sl, s0;

assign out = sl ? (S0 ? i3 : i2) : (SO ? il : i0);

endmodule ;

11. Precedence of operators :

Summary of operators in Verilog:

Examples:

S1 S0

i0

i1

i2

D3

OUT

S1n S0n
y0

y1

y2

y3

Write Verilog code for 4-to-1 Multiplexer using data flow modelling

Method 1: using logic equation

module mux4-to-l (out, i0, il, i2, i3, sl, s0);

output out;

input i0, il, i2, i3;

input sl, s0;

assign out = (~sl & ~s0 & i0) | (~sl & s0 & il) | (sl & ~s0 & i2) | (sl & s0 & i3) ;
endmodule.

Method 2: Using Conditional Operators

module multiplexer4-to-l (out, i0, il, i2, i3, sl, s0);

output out;

input i0, il, i2, i3;

input sl, s0;

assign out = sl ? (S0 ? i3 : i2) : (SO ? il : i0);

endmodule

Write Verilog code for 4 Bit Full Adder using data flow modelling

Method 1: Using Dataflow Operators

module fulladd4 (sum, c-out, x, y, c-in);

output [3:0] sum;

output c-out;

input [3: 0] x, y;

input c-in;

assign {c-out, sum) = x + y + c-in;

endmodule

Method 2: full adder with carry look ahead

module fulladd4(sum, c-out, a, b, c-in);

output [3:0] sum;

output c-out;

input [3:0] a,b;

input c-in;

wire p0,g0, pl, g1, , p2, g2, , p3, g3;

wire c4, c3, c2, c1;

assign p0 = a[0] ^ b[0],

p1= a[1] ^ b[1],

p2 = a[2] ^ b[2],

p3= a[3] ^ b[3];

assign g0 = a[0] & b[0],

g1 = a[l] & b[1],

g2 = a[2] & b[2],

 g3 = a[3] & b[3];

assign c1 = g0 | (p0 & c-in);

c2 = g1 | (p1 & g0) | (p1 & p0 & c-in);

c3 = g2 | (p2 & g1) | (p2 & p0 & c-in) | (p2 & p1 & p0 & c-in);

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p0 & c-in) | (p3 & p2 & p1 &

 p0 & c-in);

assign sum[0] = p0 ^ c-in;

sum[1] = p1 ^ c1;

sum[2] = p2 ^ c2;

sum[3] = p3 ^ c3;

assign c-out = c4;

endmodule

UNIT 2:

Gate-Level Modelling

In gate level modelling the circuit is described in terms of gates (e.g., and, nand).

Gate Types
A logic circuit can be designed by use of logic gates. In Verilog the basic logic gates are defined as

predefined primitives. There are two types of basic gates:

 And / or gates and
 Buf / not gates.

And / Or Gates

And /or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate

terminals is an output and the other terminals are inputs. The output of a gate is evaluated as soon as

one of the inputs changes. The inbuilt gate primitives are

and
or
not

nand
nor
xor

xnor

The logic symbol and truth table of these gates are as shown below:

and gate: nand gate

or gate nor gate

pg. 1

I1

I2

nand 0 1 x z

0 1 1 1 1

1 1 0 x x

x 1 x x x

z 1 x x x

I1

I2

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

I1

I2

or 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

I1

I2

nor 0 1 x z

0 1 0 x x

1 0 0 0 0

x x 0 x x

z x 0 x x

xor gate xnor gate

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are

shown below. In this example, for all instances, OUT is connected to the output out, and IN1 and IN2

are connected to the two inputs il and i2 of the gate primitives.

wire OUT, IN1, IN2;

// basic gate instantiations.

and al (OUT, IN1, IN2);

nand nal (OUT, IN1, IN2) ;

or orl (OUT, IN1, IN2);

nor nor1 (OUT, IN1, IN2) ;

xor xl (OUT, IN1, IN2) ;

xnor nxl (OUT, IN1, IN2) ;

The instance name does not need to be specified for primitives
.
Example:

and (OUT, IN1, IN2); // legal gate instantiation

Buf / Not Gates

Buf / not gates have one scalar input and one or more scalar outputs. The last terminal in the port list

is connected to the input. Other terminals are connected to the outputs.

Two basic buf / not gate primitives are –
 buf
 not

The symbols and truth tables are as shown below

pg. 2

I1

I2

xor 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

I1

I2

xnor 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

buf in out

0 0

1 1

x x

z z

not in out

0 1

1 0

x x

z x

 bufif / notif

Gates with an additional control signal on buf and not gates are also available. The primitives are

Bufif 1
bufif0

notif 1
notif0

These gates propagate only if their control signal is asserted. They propagate z if their control signal is

deasserted. Symbols for bufif / notif are shown below

pg. 3

Examples of instantiation of bufif and notif gates.

//Instantiation of bufif gates.

bufifl bl (out, in, ctrl) ;

bufif0 b0 (out, in, ctrl) ;

//Instantiation of notif gates

notifl nl (out, in, ctrl) ;

notif0 no (out, in, ctrl) ;

Example 1: Multiplexer 4: 1

The Verilog code for 4 : 1 multiplexer is as shown below .

The 1/O diagram and the truth table for the multiplexer are shown

pg. 4

S1 S0

i0

i1

i2

D3

OUT

S1n S0n
y0

y1

y2

y3

The logic diagram for the multiplexer is shown below.

The Verilog description for the multiplexer is shown below;

module mux4-to-l (out, i0, il, i2, i3, sl, S0);

output out;

input i0, il, i2, i3;

input sl, S0;

wire s1n, son;

wire y0, yl, y2, y3;

not (sln, sl) ;

not (s0n, S0);

and (y0, i0, sln, s0n);

and (yl, il, sln, s0);

and (y2, i2, sl, s0n);

and (y3, i3, sl, S0);

or (out, y0, yl, y2, y3);

end module

This multiplexer can be tested with the stimulus as shown below.

Stimulus for Multiplexer

pg. 5

// Define the stimulus module (no ports)

module stimulus;

// Declare variables to be connected to inputs

reg IN0, IN1, IN2, IN3;

reg S1, S0;

// Declare output wire

wire OUTPUT;

// Instantiate the multiplexer

mux4-to-1 mymux (OUTPUT, INO, IN1, IN2, IN3, S1, SO) ;

// define the stimulus module (no ports)

// Stimulate the inputs

initial

begin

// set input lines

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0;

#l $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n , IN0, IN1, IN2, IN3);

// choose IN0

S1 = 0; S0 = 0;

#l $display("Sl = %b, S0= %b, OUTPUT = %b/n, S1, S0, OUTPUT);

// choose IN1

S1 = 0; S0 = 1;

#l $display ("Sl = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN2

S1 = l; S0 = 0;

#l $display("Sl = %b, S0 = %b, OUTPUT = %b \n , S1, S0, OUTPUT);

// choose IN3

S1 = l; SO = 1;

#l $display("Sl = %b, S0 = %b, OUTPUT = %b \n , S1, S0, OUTPUT);

End

endmodule

The output of the simulation is displayed as shown below

IN0= 1, IN1= 0, IN2= 1, IN3= 0

S1 = 0, S0 = 0, OUTPUT = 1

S1 = 0, S0 = 1, OUTPUT = 0

S1 = 1, S0 = 0, OUTPUT = 1

pg. 6

S1 = 1, S0 = 1, OUTPUT = 0

Example 2: 1-bit full adder:

The logic diagram for a l-bit full adder is shown below:

The Verilog description is given below:

module fulladd(sum, c-out, a, b, c-in) ;

output sum, c-out;

input a, b, c-in;

wire S0, C0, C1;

xor (S0, a, b);

and (C0, a, b);

xor (sum, S0, c-in) ;

and (C1, S0, c-in);

or (c-out, C0, Cl);

endmodule

Example 3: 4-bit full adder:

A0, A1, A2 and A3 are instances of the module full add. The Verilog code for the above circuit is as

shown below.

module fulladd4(sum, c-out, x, y, c-in);
// I/O port declarations
output [3:01 sum;

pg. 7

output c-out;
input [3 : 01 a, b;
input c-in;
// Internal nets
wire cl, c2, c3;
// Instantiate four l-bit full adders.

fulladd A0 (sum[0l, cl, x[0], y[0], c-in);

fulladd A1 (sum[l], c2, x[1] , y[l] cl);

fulladd A2 (surn[2], c3, x[2], y[2], c2);

fulladd A3 (sum[3], c-out, x[3], b[3], c3);

endmodule

The design is checked by applying stimulus.

// Define the stimulus (top level module)

module stimulus;

reg [3:0] X, Y;

reg C-IN;

wire [3:0] SUM;

wire C-OUT;

// Instantiate the 4-bit full adder. call it FA1-4

fulladd4 FA1_4(SUM, C-OUT, X, Y, C-IN) ;

// Setu~ the monitorins for the sisnal values

initial

begin

$monitor($time," A= %b, B=%b, C-IN= %b, --- C-OUT= %b, SUM= %b\n’,

A, B, C-IN, C-OUT, SUM);

end

// Stimulate inputs

initial

begin

A = 4'd0; B = 4'd0; C-IN = l'b0;

#5 A = 4’d3, B = 4’d4;

#5 A = 4’d2, B = 4’d5;

#5 A = 4’d9, B = 4’d9;

pg. 8

#5 A = 4’d10, B = 4’d15;

A = 4'd10; B = 4'd5; C-IN = l'b1;

end
endmodule
The output of the simulation is shown below.

0 A= 0000, B=0000, C-IN= 0, --- C-OUT= 0, SUM= 0000

5 A= 0011, B=0100, C-IN= 0, --- C-OUT= 0, SUM= 0111

10 A= 0010, B=0101, C-IN= 0, --- C-OUT= 0, SUM= 0111

15 A= 1001, B=1001, C-IN= 0, --- C-OUT= 1, SUM= 0010

20 A= 1010, B=llll, C-IN= 0, --- C-OUT= 1, SUM= 1001

25 A= 1010, B=0101, C-IN= l, C-OUT= 1, SUM= 0000

Gate Delays

In real circuits, logic gates have delays associated with them.

There are three types of delays from the inputs to the output of a primitive gate.

 Rise delay

 Fall delay

 Turn-off delay

pg. 9

Rise delay
The time taken for the output of a
gate to change from some value to 1
is called a rise delay.

Fall delay

The time taken for the output of a
gate to change from some value to 0
is called a fall delay

Turn-off delay:
The time taken for the output of a
gate to change from some value to
high impedance (z) is called turn-off
delay.

 If the value changes to X, the minimum of the three delays is considered, Three types of delay

specifications are allowed.

 If only one delay is specified, this value is used for all transitions.

Example:

Delay of delay-time for all transitions,

Syntax:

and #(delay-time) al (out, il, i2);

and #(5) al (out, il, i2); //Delay of 5 for all transitions

 If two delays are specified, they refer to the rise and fall delay values.

Example:

Rise and Fall Delay Specification.

Syntax

and # (rise-val, fall-val) a2 (out, il, i2)

and #(4,6) a2(out, il, i2); // Rise = 4, Fall = 6;

 If a11 three delays are specified, they refer to rise, fall, and turn-off delay values.

Example:

// Rise, Fall, and Turn-off Delay Specification

Syntax

Bufif0 #(rise-val, fall-val, turnoff-val) bl (out, in, control);

buf if0 # (3,4,5)b l (out,i n, control); // ~ise= 3, Fall = 4, Turn-off = 5

Min / Typ / Max Values

For each type of delay-rise, fall, and turn-off-three values, min, typ, and max, can be specified. Any

one value can be chosen at the start of the simulation.

Min value

The min value is the minimum delay value that the designer expects the gate to have.

Max value

The max value is the maximum delay value that the designer expects the gate to have.

Min, typ, or max values can be chosen at Verilog run time. Method of choosing a min/typ/max value

may vary for different simulators or operating systems. If no option is specified, the typical delay

value is the default.

Examples of min, typ, and max value specification is given below.

// One delay

and #(4:5:6) al(out, il, i2);

// if +mindelays, delay= 4

pg. 10

// if +typdelays, delay= 5

// if +maxdelays, delay= 6

// Two delays

and #(3:4:5, 5:6:7) a2(out, il, i2);

// if +mindelays, rise= 3, fall= 5, turn-off = min (3,5)

// if +typdelays, rise= 4, fall= 6, turn-off = min (4,6)

// if +maxdelays, rise= 5, fall= 7, turn-off = min (5,7)

// Three delays

and #(2:3:4, 3:4:5, 4:5:6) a3(out, il,i2);

// if +mindelays, rise= 2 fall= 3 turn-off = 4

// if +typdelays, rise= 3 fall= 4 turn-off = 5

// if +maxdelays, rise= 4 fall= 5 turn-off = 6

Delay Example

Consider the equation

 out = (a . b) + c

The logic diagram for the above equation is as shown below. The gate-level implementation is shown

below.

 module D (out, a, b, c);

output out;

input a,b,c;

wire e;

and # (5) a1 (e, a, b) ; //Delay of 5 on gate a1

or #(4) ol(out, e,c); //Delay of 4 on gate 01

endmodule

This module is tested by the stimulus file shown below

module stimulus

reg A, B, C;

wire OUT;

D dl(OUT, A, B, C);

// Stimulate the inputs. Finish the simulation at 40 time units

pg. 11

initial

begin

A= l'bO; B= l'bO; C= l'bO;

#l0 A= l'bl; B= l'bl; C= l'bl;

#l0 A= l'bl; B= l'bO; C= l'bO;

#20 $finish;

end

endmodule

pg. 12

Operators in C

An operator is a symbol that tells the computer to perform certain mathematical or logical manipulations.
The C operators can be classified into the following categories-

1. Arithmetic operators
2. Relational operators
3. Logical operators
4. Assignment operators
5. Increment and decrement operators
6. Bitwise operators
7. Special operators

1. Arithmetic operators

 These operators are used for numerical calculations (or) to perform arithmetic operations. There are
two types of mathematical operators: unary and binary. Unary operators perform an action with a single
operand. Binary operators perform actions with two operands.

Real arithmetic
An arithmetic operation involving only real operands is called real arithmetic. Since floating point values
are rounded to the number of significant digits permissible, the final value of the correct result.

Example:

If x , y and z are floats, then

x = 6.0/7.0 = 0.857143
y = 1.0/3.0 = 0.333333
z = -2.0/3.0 = - 0.66667

Mixed mode arithmetic
When one of the operands is real and the other is integer, the expression is called a mixed mode
arithmetic expression. If either operand is of the real type, then only the real operation is performed and
the result is always a real number.

Example:
15/10.0 = 10. 5 where as

15/10 = 1.

When both the operands in a single
arithmetic expression are integers, the
expression is called an integer expression.
Example:
If a = 14 and b= 4
a + b = 18;
a - b = 14;
a * b = 56;
a / b = 3;
a % b = 2;

2. Relational operators:

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if
the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

3.
3.
3.
3.
3.

Logical operators

An expression containing logical operator returns either 0 or 1 depending upon whether expression results
true or false. These are used to combine 2 (or) more expressions logically. They are

logical AND (&&)
 logical OR (||) and
logical NOT (!)

Operator Meaning Example

&& Logical AND.
True only if all operands are true

If c = 5 and d = 2 then,
expression ((c==5) && (d>5)) equals to 0.

|| Logical OR.
True only if either one operand is true

If c = 5 and d = 2 then,
expression ((c==5) || (d>5)) equals to 1.

! Logical NOT.
True only if the operand is 0

If c = 5 then,
expression !(c= =5) equals to 0.

4. Assignment operators

An assignment operator is used for assigning a value to a variable. When two quantities are compared
depending on their relation the values are assigned.

 Example:

If a = 5, then

Operator Meaning of Operator Example

= = Equal to 5 = = 3 is evaluated to 0
> Greater than 5 > 3 is evaluated to 1
< Less than 5 < 3 is evaluated to 0
!= Not equal to 5 != 3 is evaluated to 1
>= Greater than or equal to 5 >= 3 is evaluated to 1
<= Less than or equal to 5 <= 3 is evaluated to 0

Operator Example Same as

= a = b a = b
+= a += b a = a+b
-= a -= b a = a-b
*= a *= b a = a*b
/= a /= b a = a/b

%= a %= b a = a%b

 c = a; // c is 5
 c += a; // c is 10
 c -= a; // c is 5

 c *= a; // c is 25
 c /= a; // c is 5

 c %= a; // c = 0

5. Increment and decrement operators

C programming has two operators

 increment + + and

 decrement - - to change the value of an operand by 1.

Increment + + increases the value by 1 whereas decrement - - decreases the value by 1. These two

operators are unary operators, meaning they only operate on a single operand.

Increment operator:

There are two types −

 pre increment

 post increment
If we place the increment operator before the operand, then it is pre-increment. Later on, the value is

first incremented and next operation is performed on it.

Example:

z = ++a; // a= a+1

z = a

If a = 10, then z = ++ a gives

z= 11

a=11

If we place the increment operator after the operand, then it is post increment and the value is
incremented after the operation is performed.

Example:

z = a++; // z=a

a= a+1

If a = 10, then z = a+ + gives

z= 10

a=11

Decrement operator:

It is used to decrement the values of a variable by 1.

The two types are −

 pre decrement

 post decrement

If the decrement operator is placed before the operand, then it is called pre decrement. Here, the value is
first decremented and then, operation is performed on it.

Example:

z = - - a; // a= a-1

z= a

If a = 10, then z = - - a gives

z= 9

a= 9

If the decrement operator is placed after the operand, then it is called post decrement. Here, the value is
decremented after the operation is performed.

Example:

z = a--; // z=a

a= a-1

If a = 10, then z = a - - gives

z= 10

a= 9.

6. Conditional operator (? :)

It is also called ternary operator.

The syntax is as follows −

exp1? exp2: exp3

 The operator ?: works as follows: exp1 is evaluated first. If it is true, then the exp2 is evaluated and

becomes the value of the expression.

If exp1 is false, exp3 is evaluated and its value becomes the value of the expression.

Example:

a = 10;

b = 15;

x = (a > b)? a: b;

If (a > b)

x = a;

else

x = b;

7. Bitwise operators:

Bitwise operators operate on bits.

Example: A = 60 = 0011 1100 and

B = 13 = 0000 1101

Bitwise AND(&)
Bitwise AND Operator copies a bit to the result if it exists

in both operands.

Operator Description

& Bitwise AND
| Bitwise OR
^ Bitwise XOR

<< Left Shift
>> Right shift

~ One's Complement

Bitwise XOR (^).

Binary XOR Operator copies the bit if it is set in one operand but not both.

(A ^ B) = 49, i.e., 0011 0001

One's Complement (~):

Binary One's Complement Operator is unary and has the effect of 'flipping' bits. Meaning, all the 0s
become 1s and vice-versa.

(~A) = ~(60), i.e,. -0111101

Left Shift (<<)

Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the

right operand.

A << 2 = 240 i.e., 1111 0000

Right shift(>>)

Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the

right operand.

A >> 2 = 15 i.e., 0000 1111.

8. Special operators:

Some of the special operators are Comma operator, Sizeof operator, pointer operator (& and *) and

member selection operator (. and ->).

Comma Operator:

The Comma operator is used to link the related expressions together. It evaluates first operand and then

discards the result of the same, then the second operand is evaluated and result of same is returned. The

comma linked list of expressions are evaluated left to right and the value of right most expression is the

value of combined expression.

Example:

 value = (x =10, y = 5, x+y);

First assigns the value 10 to x, then 5 to y and finally assigns 15 to value.

Sizeof operator:

The sizeof is a unary operator that returns the size of data (constants, variables, array, structure, etc).

Example:

sizeof(a),where a is integer, will return 4.

sizeof(b), where b is float, will return 4.

sizeof(c), where c is double, will return 8.

sizeof(d), where d is integer, will return 1.

Arithmetic expressions:

 An expression is a combination of operators, constants and variables. An expression may consist of one

or more operands, and zero or more operators to produce a value.

Types of Expressions in C
 Arithmetic expressions.
 Relational expressions.
 Logical expressions.
 Conditional expressions.

An arithmetic expression in c is a combination of variables, constants, and operators arranged as per the
syntax of the language. C can handle any complex mathematical expressions.
Example:

Algebraic Expression C Expression

a x b – c a * b – c

(m + n)(x + y) (m + n) * (x + y)

ab / c (a*b) / c

3x2 + 2x + 1 (3 * x * x) + (2 * x) + 1

x / y + c x / y + c

Precedence of Arithmetic Operators

Example:

Consider following statements:

x = a – b / 3 + c * 2 – 1;

Operators Operations Order Precedence

() Parentheses Evaluated first.

* / % Multiplication, Division, Remainder Evaluated second

+ – Addition, Subtraction Evaluated third.

= Assignment Evaluated last

Assume a = 10, b = 12, c = 2, the statement becomes
x = 10 – 12 / 3 + 2 * 2 – 1 is evaluated is as follows

Step 1 : x = 10 - 4 + 2 * 2 -1 (Division is Evaluated 12 / 3 = 4)
Step 2 : x = 10 - 4 + 4 -1 (Multiplication is Evaluated 2 * 2 = 4)
Step 3: x = 6 + 4 -1 (Subtraction is Evaluated 10 - 4 = 6)
Step 4: x = 10 -1 (Addition is Evaluated 6 + 4 = 10)
Step 5: x = 9 (Subtraction is Evaluated 10 - 1 = 9 and Assign 9 to x)

INPUT-OUTPUT

FORMATTED INPUTS:

Formatted I/O functions are used to take various inputs from the user and display multiple outputs to the

user. These types of I/O functions can help to display the output to the user in different formats using the

format specifiers. These I/O supports all data types like int, float, char, and many more.

These functions are called formatted I/O functions because we can use format specifiers in these functions

and hence, we can format these functions according to our needs.

The Formatted input/output functions are -

scanf() – which is used to read one or multiple inputs from the user at the console.

printf() – which is used to display one or multiple values in the output to the user at the console.

Formatted input refers to the data that has been arranged in a particular format. To read data in from

standard input (keyboard), we call the scanf function. The basic form of a call to scanf is:

Inputting integer numbers:

 scanf(control_string, list_of_variable_addresses);

 The control string specifies the field format in which the data is to be entered. It contains

 format specifiers having conversion character %

 a data type character and

 An optional number specifying the field width.

 The list of variable addresses specify the address of the locations where the data is stored

The field specification for reading a number is as follows:

Scanf(“%d%d”, &num1,&num2);

Data line is

31426 , 50

Then num1 = 31426 and num2 = 50 is assigned.

Any input field may be slipped by specifying * in the place of the filed width.

Example:

Scanf(“%d%*d %d”, &num1,&num2);

Data line
123 456 789

The output is
num1 = 123
456 is skipped (because of *)
Num2 = 789.

Inputting Real Numbers

scanf reads real numbers using the specification %f
Example:

Scanf(“%f%f%f”, &x1,&y, &z);

With the input data
475.89 43.21 E-1 678
Will assign the value 475.89 = x , 4.321 = y and 678.0 = z
A number may be skipped using %*f specification

Inputting Character Strings

The '%s' is used as a format specifier for the string in c language.
Example:
char color[20];
scanf("%s", color);

Reading mixed data types
It is possible to use one scanf statement to input a data line containing mixed mode data. It should be
ensured that the input data items match the control specifications in order and type.
Example:

scanf("%d %c %f %s", &count, &code, &ratio, name);

will read the data

15 p 4.575 coffee

Formatted output

printf function is used for printing captions and numerical results. The output should be easily
understandable and easy-to-use form.
 The basic format of a printf function is:
 printf (control_string, list_of_expressions);

The control string consists of three types of items:

 Characters that will be printed on the screen as they appear

 Format specifier that define the output format for display of each item.

 Escape sequence characters such as \ n,\ t and \ b
Example:

printf(“programming in C”);
printf(“ ”);
printf(“\n”);
printf(“%d” ,x);
printf(“a = %f\n b = %f , a,b);
printf(“sum =%d” ,1234);
printf(“ \n \n”);

BASIC STRUCTURE OF C PROGRAM:

Documentation Section

This section consists of the description of the program, the name of the program, and the creation date
and time of the program. It is specified at the start of the program in the form of comments.
Documentation can be represented as:

// description, name of the program, programmer name, date, time etc.

Anything written as comments will be treated as documentation of the program and this will not
interfere with the given code. Basically, it gives an overview to the reader of the program.

Link Section

The link section provides instructions to the compiler to link functions from the system library.

Example:
#include<stdio.h>
#include<math.h>

Definition section:
The definition section defines all symbolic constants. Whenever this name is encountered by the
compiler, it is replaced by the actual piece of defined code.

Example:
PI = 3.14

Global Declaration Section

There are some variables that are used in more than one function. Such variables are called global
variables.

Example:
intnum = 18;
int a=7;

Main Function Section

Every C-programs must have the main() function. Each main function contains 2 parts. A declaration

part and an Execution part. The declaration part is the part where all the variables are declared. The

execution part begins with the curly brackets and ends with the curly close bracket. Both the

declaration and execution part are inside the curly braces. All statements in the declaration and

executable parts end with semicolon.

Example:
int main(void)
{
int a=10;
printf(" %d", a);
}
Sub Program Section

The subprogram section contains all the user defined functions that are called in the main
function.

Example:
int add(int a, int b)
{
returna+b;
}

Character set

The character set refers to a set of all the valid characters that we can use in the source program
for forming words, expressions, and numbers. The characters in C are grouped into following
categories:

C tokens:

Tokens in C language are the smallest elements or the building blocks used to construct a C program.

 Types of characters:

1. Letters

2. Digits

3. Special characters and

4. White spaces

Types of Tokens

Tokens in C language can be classified as:

1. Keywords
2. Identifiers
3. Constants

4. Special Characters
5. Strings
6. Operators

Keywords and identifiers:

Every C word is classified as either a keyword or identifier. Keywords have fixed meanings. They
serve as the basic building blocks for programming statements. There are 32 built-in keywords.

Identifiers refer to the names of variables, functions and arrays. These are user defined names and
consist of sequence of letters and digits with letter as first character. The underscore character can also
be used in identifiers.

Constants:

Constants are the fixed values that do not change during the execution of the program. The
classification of constants is as shown below.

Numeric Constant:
 A numeric constant consists of numerals. Numeric constants are again divided into two types:

 Integer constant

 Real constant

a) Integer constant:

An integer constant refers to the
sequence of digits. There are
three types of integers –

1. Decimal
2. octal
3. hexadecimal

Decimal integers consist of set of digits 0 to 9. The + or - sign is optional.

Example:
123, -321, 0 , 654321 , + 78 etc.
Embedded characters, commas and non digit characters are not permitted between digits.

Example:
15 750 , 20, 000 , $ 420 etc., are illegal numbers.
An octal integer constant consists of any combination of digits from 0 to 7with a leading zero.

Example:
037 , 0 , 0435 , 0551 etc.,
The hexadecimal integer constant consists of digits from 0 to 9 and letters from A to F. here the
sequence digits must begin with 0x or 0X

Example:
0X2 , 0x9F , 0Xbcd, 0X

b) Real Constant:

Integers are inadequate to represent the quantities that vary continuously. Hence these are represented
numbers containing factional part. Such numbers are called Real or Floating point constants.

Example:
215. , 0.95, - 7.1, + 0.5
They can also be represented in exponential form

Example:
0.65 e4 , 12 e-2, 1.5 e+5, 3.18E3 , -1.2E-1

Character constant:

A single character constant contains a single character enclosed within a single quotes. These character
constants are translated into ASCII code.

Example:
‘5’ , ‘X’, ‘a’

String constants:

A string constantis a sequence of characters enclosed within double quotes. the characters may be

letters, numbers, special characters, blank space etc.,

Example:

“Hello”, “1987”, “Well Done”, “ 5 + 3”

Backslash character constants:

A backslash character (\) is used to introduce an escape sequence, which allows a visual
representation of certain nongraphic characters

The following conditions hold good for a variable

a) Variable name must begin with a letter
b) It must begin with a digit
c) Variable names can be any length
d) It should not be a keyword
e) Upper case and lower case letters are different
f) White spaces are not allowed.

DATA TYPES

The data type indicates the type of data stored in the variables. The data types are classified into

 Primary (fundamental) data type
 Derived data type
 User defined data type

Primary (fundamental) data type

The C language has 3 basic (primary or primitive) data types, they are:

Variables:

A variable is an identifier that is used to store
different values at different times during the
execution of the program

Example:
Average, height, Total, Counter_1,
class_strength etc.,

The primary data types are of five types –

1. Integer(int)
2. Character(char)
3. Floating point(float)
4. Double precision floating

point(double)
5. Void(void)

Integer types:
Integers are whole numbers with a range of values supported by the word size of the machine. The

word size is 16 or 32 bits. For 16 bit word length, the size of the integer value range is -32768 to

+32767 (-215 to +215).

In order to provide more range of numbers and storage space, the integer types has been classified into

shortint, int and longint in both signed and unsigned forms

Type Size(bits) Range
char or signed char 8 -128 to 127

unsigned char 8 0 to 255
int or signed int 16 -32768 to 32767

unsigned int 16 0 to 65535
short int or signed short int 8 -128 to 127

unsigned short int 8 0 to 255
long int or signed long int 32 -2147483648 to 2147483647

unsigned long int 32 0 to 4294967295
float 32 3.4E-38 TO 3.4E+38

double 64 1.7E-308 TO 1.7E+308
long double 80 3.4E-4932 TO 1.1E+4932

For example, short int represents small integer values and requires half the amount of storage as a
regular int number uses.

Floating point types
 Floating point numbers are declared by the key word float. If more accuracy is required in
representing a number, the type double can be used to define a number. A double data type number
uses 64 bits giving a precision of 64 bits.

Declaration of variables:

The variable names designed must be declared to the complier. The declaration of variables does –

 That it informs the compiler the name of the variable and

 It specifies what type of data the variable will hold.
There are two types of variable declaration namely –

 Primary type declaration and

 User defined type declaration

Assignment statement:

Values can be assigned to variables using the assignment operator = as follows
variable_name = constant;

Example:
initial_value = 0;
final value = 100;
balance = 75.84;
yes = ‘x’;

DECISION MAKING AND BRANCHING

In programming the order of execution of instructions may have to be changed depending on certain

conditions. This involves a kind of decision making to see whether a particular condition has occurred or

not and then direct the computer to execute certain instructions accordingly.

Some of the decision making statements are -

1. if statement

2. switch statement

3. conditional operator statement

4. goto statement

Decision making with if statement:

It is basically a two-way decision statement used in conjunction with an expression. It is of the form

if(test expression)

Example:

*if (room is dark)
put on lights
*if(code is 1)
Person is male

There are different forms of if statement which is implemented depending on the complexity of the

conditions to be tested. They are –

1. simple if statement

2. if …..else statement

3. nested if …..else statement

4. else if ladder

Simple if statement:

The general form of simple if statement is:

if (test expression)
{
statement block;
}
statement x;

The statement block may be a single statement or a group of statements. If the test expression is true, the

statement block will be executed otherwise the statement block will be skipped and the execution will jump

to the statement –x.

Example:
if (code = = 1)
{
salary = salary + 500;
}
printf("%d",salary);

The if…..else statement:

The if... else statement is an extension of the simple if statement
Syntax is:
if (test expression)
{
statement block;
}
else
{
statement block;
}
statement-x;

Nesting of if …..else statements

When a series of conditions are to be checked, we may have to use more than one if... else statement in the

nested form.

The logic of the execution is as shown above. If condition 1 is false, the statement 3 will be executed;

otherwise it continues to perform the second test. If the condition 2 is true, the statement 1 will be

evaluated; otherwise the statement 2 will be evaluated and then the control is transferred to the

statement –x.

Example:

if(a>b)
 {
 if(a>c)
 printf(“ a is greater”);
 else
 printf(“ c is greater”);
 }
else
 {
 if(b>c)

Example:
if (code = = 1)
{
boy= boy + 1;
}
else
{
girl = girl + 1;
}

 {
 Printf(“b is greater”);
 }
 else
 {
 Printf(“c is greater”);
 }
The SWITCH statement

 The Switch statement tests the value of given expression or variable against a list of case values and when

a match is found that block of statements associated with that case is executed. The general form of switch

statement is as shown below.

switch(expression)
 {
 case constant1 :
 block1;
 break;
 case constant2 :
 block2;
 break;
 case constant n:
 block n;
 break;
 .
 .
 .
 default:
 default block;
 break;
}

Here according to numbers from 1 to 7 the corresponding day is displayed. If we input any number other
than 1 to 7 then the default case is executed.

The goto statement

The goto statement is an unconditional jump statement. This statement can be used to jump from anywhere
to anywhere within a function. The general forms of goto statement is as shown below

Example:

int num;
printf(“enter a number”);
scanf(‘%d”,&num);
switch(num)
{
case 1:
 printf(“Sunday”);
 break;
case 2:
 printf(“Monday”);
 break;
case 3:
 printf(“Tuesday”);
 break;
case 4:
 printf(“Wednesday”);
 break;
case 5:
 printf(“Thursday”);
 break;
case 6:
 printf(“Friday”);
 break;
case 7:
 printf(“Saturday”);
 break;
default:
 printf(“wrong choice”);
 break;
}

Example:

#include <stdio.h>
int main()
{
 int sum=0;
 for(int i = 0; i<=10; i++)
{

sum = sum+i;
if(i==5)

{
 goto addition;
}

 }

 addition:
 printf("%d", sum);
}

In this example, we have a label addition and when the value of i (inside loop) is equal to 5 then we are

jumping to this label using goto. This is reason the sum is displaying the sum of numbers till 5 even though

the loop is set to run from 0 to 10.

DECISION MAKING AND LOOPING

Execution of a statement or set of statement repeatedly is called as looping. The loop may be executed

a specified number of times and this depends on the satisfaction of a test condition. A program loop is

made up of two parts –

 Body of the loop and

 Control condition.

Depending on the control condition statement the statements within the loop may be executed repeatedly.

Depending on the position of the control statement in the loop, a control structure may be classified as –

 entry controlled loop

 An exit controlled loop.

The looping process has the following steps:
1. Setting and initialization of the counter
2. Execution of the statement in the loop
3. Test for a specified condition for the execution of the loop
4. Incrementing the counter.

The C language provides 3 loop structures.

1. while loop.

2. do loop.

3. for loop.

THE WHILE STATEMENT

The simplest of all the looping structures in C is the while statement. The general format of the while

statement is

while (test condition)

{

body of the loop

}

The while is an entry controlled loop statement. The test-condition is evaluated and if the condition is true,

then the body of the loop is executed. After execution of the body, the test-condition is once again

evaluated and if it is true, the body is executed once again. This process of repeated execution of the body

continues until the test-condition finally becomes false and the control is transferred out of the loop.

Example:

sum = 0; n = 1;

while (n <= 10)

 {

sum = sum + n * n;

 n = n + 1;

}

print(“sum = %d\n”, sum);

The body of the loop is executed 10 times for n = 1, 2, …, 10 each me adding the square of the value of n,

which is incremented inside the loop. The test condition may also be written as n < 11; the result would be

the same. This is a typical example of counter-controlled loops. The variable n is called counter or control

variable.

THE DO STATEMENT

A do…while loop in C is similar to the while loop except that the condition is always executed after the

body of a loop. It is also called an exit-controlled loop.

Syntax

do
 {
 statements
}
 while (expression);

On seeing the do statement, the program proceeds to evaluate the body of the loop first. Then the test

condition near while statement is evaluated. If the condition is true, the program continues to evaluate the

body of the loop once again. This process continues as long as the condition is true. When the condition

becomes false, the loop will be terminated and the control goes to the statement that appears immediately

after the while statement. The do … while statement is an exit-controlled loop.

Example:

#include<stdio.h>
#include<conio.h>
int main()
{

int num=1; //initializing the variable
do //do-while loop
{

printf("%d\n",2*num);
num++; //incrementing operation

}
while(num<=10);

THE FOR STATEMENT:
Simple ‘for’ loops
The for loop is another entry-controlled loop that provides a more concise loop control structure. The
general format of for loop is

for (initializing ; test-condition ; increment)

{

 body of the loop

}

The execution of the for statement is as follows:
1. Inialization of the control variable is done first, using assignment statements such as I = 1 and

count = 0. The variables I and count are known as loop-control variables.
 2. The value of the control variable is tested using the test-condition. The test-condition is a

relational expression, such as I < 10 that determines when the loop will exit.
Example:
for (x = 0; x <= 9; x = x+ 1)
{
printf (“%d”, x):
}
printf (“\n”);

ARRAYS:

Array in C can be defined as a method of collection of multiple entities of similar type into a

larger group. These entities or elements can be of int, float, char, or double data type or can be of user-

defined data types too like structures. However, in order to be stored together in a single array, all the

elements should be of the same data type. The elements are stored from left to right with the left-most

index being the 0th index and the rightmost index being the (n-1) index. A particular value is indicated by

writing a number called index or subscript in brackets after the array name

Example:

Salary [10] represents the salary of the 10th employee.

Arrays in are of two types –

1. one dimensional arrays

2. Two dimensional arrays.

One dimensional Arrays

One dimensional array is an array that has only one subscript specification that is needed to specify a

particular element of an array. A one-dimensional array is a structured collection of components (often

called array elements) that can be accessed individually by specifying the position of a component with a

single index value.

Syntax:

data-type arr_name[size];

For example, int a[5]

Example of one dimensional array:

#include<stdio.h>

int main ()

{

 int a[5] = {10,20,30,40,50};

 int i;

 printf ("elements of the array are");

 for (i=0; i<5; i++)

 printf ("%d", a[i]);

}

Output:

Elements of the array are

10 20 30 40 50

Two dimensional Arrays

An array of arrays is known as 2D array . The two dimensional (2D) array in C programming is also

known as matrix. A matrix can be represented as a table of rows and columns.

Example:

This program demonstrates how to store the elements entered by user in a 2d array and how to display the

elements of a two dimensional array.

#include<stdio.h>

int main(){

 /* 2D array declaration*/

 int disp[2][3];

 /*Counter variables for the loop*/

 int i, j;

 for(i=0; i<2; i++) {

 for(j=0;j<3;j++) {

 printf("Enter value for disp[%d][%d]:", i, j);

 scanf("%d", &disp[i][j]);

 }

 }

 //Displaying array elements

 printf("Two Dimensional array elements:\n");

 for(i=0; i<2; i++) {

 for(j=0;j<3;j++) {

 printf("%d ", disp[i][j]);

 if(j==2){

 printf("\n");

 }

 }

 }

 return 0;

}

Output:

Enter value for disp[0][0]:1
Enter value for disp[0][1]:2
Enter value for disp[0][2]:3
Enter value for disp[1][0]:4
Enter value for disp[1][1]:5
Enter value for disp[1][2]:6
Two Dimensional array elements:
1 2 3
4 5 6

	2. Relational operators:
	A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the relation is false, it returns value 0.
	Comma Operator:
	Precedence of Arithmetic Operators

	Sub Program Section
	The subprogram section contains all the user defined functions that are called in the main function.
	int add(int a, int b)
	{
	returna+b;
	}

	Types of Tokens
	

