ISSN 2414-3146

Received 26 November 2016 Accepted 27 November 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; N—H···N hydrogen bonds; 1,3,4-oxadiazole derivative.

CCDC reference: 1520838

Structural data: full structural data are available from iucrdata.iucr.org

5-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine

S. Naveen,^a P. Naveen,^b Zabiulla,^b H. R. Manjunath,^c N. K. Lokanath,^d* Shaukath Ara Khanum^b and Ismail Warad^e*

^aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, ^cDepartment of Physics, Acharya Institute of Technology, Soldevanahalli, Bengaluru 562 090, India, ^dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and ^eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories. *Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, khalil.i@najah.edu

In the title compound, $C_9H_9N_3O_2$, the dihedral angle between the aromatic rings is 8.64 (10)°. The crystal structure features inversion-related dimers linked by pairs of N-H···N hydrogen bonds, generating $R_2^2(8)$ loops. A further N-H···N hydrogen bond links the dimers into (100) sheets.

Structure description

Derivatives of 1,3,4-oxadiazole exhibit a broad spectrum of pharmaceutical applications such as antibacterial, anticonvulsant (Taha *et al.*, 2016), anti-inflammatory, anticancer, analgesic and fungicidal. As a part of our ongoing research on such molecules (Yasser *et al.*, 2016) we report herein on the synthesis and crystal structure of the title compound (Fig. 1).

The molecule is approximately planar as indicated by the dihedral angle value of 8.64 (10)° between the aromatic rings. The methoxy group lies almost in the plane of the phenyl ring as indicated by the torsion angle value of -5.1 (3)° for C9-O2-C5-C6. The crystal structure features inversion-related dimers linked by pairs of N-H···N hydrogen bonds generating $R_2^2(8)$ loops (Table 1 and Fig. 2). A further N-H···N hydrogen bond links the dimers into (100) sheets.

Synthesis and crystallization

To a solution of 1-(4-methoxybenzylidene)semicarbazide in ethanol, chloramine-T was added and refluxed. The reaction was monitored by TLC and the after completion of the reaction, the sodium chloride formed in the reaction was filtered and the filtrate was

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

concentrated and extracted to dichloromethane. The organic layer was washed with 10% hydrochloric acid, the aqueous layer was neutralized with 10% sodium hydroxide and the white solid obtained was further purified. Colourless crystals formed after 3 days due to the slow evaporation of the solvent. Yield 84%, m.p. 246–248°C.

IR (KBr, γ /cm⁻¹): 3409–3490 (COOH), 3050 (CH), 1730 (CO of COOH), 1675 (CO of OCOCH₃). ¹H NMR (400 MHz, DMSO-*d*⁶): δ 3.9 (*s*, 3H,CH₃) 5.1 (*s*, 2H,NH₂), 7.1–08.1 (*m*, 4H, ArH), ¹³C NMR: 155.32, 150.06, 129.21, 125.43, 124.31, 54.32. LCMS (*M*⁺): (191). Analysis calculated for C₉H₉N₃O₂: C, 56.54; H, 4.74; N, 21.98; found: C, 56.01; H, 4.56; N, 21.68%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. NP gratefully

Figure 2

Inversion-related dimers linked by pairs of N-H···O hydrogen bonds, generating $R_2^2(8)$ loops. The right-hand molecule is generated by the symmetry operation 2 - x, 3 - y, 2 - z.

Table 1	
Hydrogen-bond geometry (Å, °).	

$N3-H3A\cdots N2^{i} \qquad 0.$.86 2	2.09	2.924 (2)	163
$N3-H3B\cdots N1^{ii} \qquad 0.$.86 2	2.13	2.969 (2)	164

Symmetry codes: (i) -x + 2, -y + 3, -z + 2; (ii) $x, -y + \frac{5}{2}, z - \frac{1}{2}$.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_9H_9N_3O_2$
Mr	191.19
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	16.2029 (9), 5.0730 (3), 11.1133 (6)
β (°)	108.096 (3)
$V(\dot{A}^3)$	868.30 (9)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.90
Crystal size (mm)	$0.28 \times 0.26 \times 0.23$
Data collection	
Diffractometer	Bruker X8 Proteum
Absorption correction	Multi-scan (SADARS: Bruker
	2013)
T + T	0.788 0.821
No of measured independent and	5230 1430 1308
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.042
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.587
Pafinament	
$P[F^2 > 2\sigma(F^2)] = wP(F^2)$ S	0.046 0.142 1.15
R[T > 20(T)], WR(T), S	1/30
No. of parameters	1450
H atom treatment	H atoms treated by a mixture of
	independent and constrained
A A (³ - 3)	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm A}^{-5})$	0.32, -0.31

Computer programs: *APEX2* and *SAINT* (Bruker, 2013), *SHELXS97* and *SHELXL97* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008).

acknowledges the financial support of UGC MRP(S)-0551–13-14/KAMY013/UGC-SWRO. Zabiulla gratefully acknowledges the financial support provided by the Department of Science and Technology, New Delhi, under the INSPIRE– Fellowship scheme. SAK thankfully acknowledges the financial support provided by VGST, Bangalore, under the CISEE Programme.

References

- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mohammed, Y. H. I., Naveen, S., Lokanath, N. K. & Khanum, S. A. (2016). *IUCrData*, **1**, x160416.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Taha, M., Ismail, N. H., Imran, S., Wadood, A., Rahim, F., Saad, S. M., Khan, K. M. & Nasir, A. (2016). *Bioorg. Chem.* 66, 117–123.

full crystallographic data

IUCrData (2016). 1, x161896 [https://doi.org/10.1107/S2414314616018964]

5-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine

S. Naveen, P. Naveen, Zabiulla, H. R. Manjunath, N. K. Lokanath, Shaukath Ara Khanum and Ismail Warad

5-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine

Crystal data

C₉H₉N₃O₂ $M_r = 191.19$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.2029 (9) Å b = 5.0730 (3) Å c = 11.1133 (6) Å $\beta = 108.096$ (3)° V = 868.30 (9) Å³ Z = 4

Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 18.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.142$ S = 1.151430 reflections 129 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 400 $D_x = 1.463 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 1308 reflections $\theta = 8.0-64.8^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.28 \times 0.26 \times 0.23 \text{ mm}$

 $T_{\min} = 0.788, T_{\max} = 0.821$ 5230 measured reflections 1430 independent reflections 1308 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$ $\theta_{\text{max}} = 64.8^{\circ}, \theta_{\text{min}} = 8.0^{\circ}$ $h = -18 \rightarrow 18$ $k = -5 \rightarrow 5$ $l = -12 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0816P)^2 + 0.4652P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³ Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC^2\Lambda^3/SIN(2\Theta)]^{-1/4} Extinction coefficient: 0.0050 (13)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H atoms were fixed geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms and = $1.2U_{eq}(C)$ for the others.

 $U_{\rm iso} * / U_{\rm eq}$ х v Ζ 01 0.84349 (8) 1.0817 (3) 0.83232(11)0.0197 (4) 02 0.58911 (9) 0.0230 (4) 0.4726(3)0.65817(13) N1 0.88643 (10) 1.0232 (3) 1.03973 (15) 0.0186 (5) N2 0.93522 (10) 1.2299 (3) 1.01268 (14) 0.0190 (5) N3 0.93358(12)1.4284(4)0.81916 (15) 0.0264(6)C1 0.90787 (12) 1.2572 (4) 0.88958 (17) 0.0183 (6) C2 0.83441(12)0.9410(4)0.93398(17)0.0164 (6) C3 0.7335(4)0.76937(12)0.91245 (17) 0.0186(6) C4 0.70870(12) 0.6920(4)0.79427 (17) 0.0178 (6) C5 0.4939 (4) 0.0190 (6) 0.64685 (12) 0.77827 (18) C6 0.64528 (13) 0.3346(4)0.87986 (19) 0.0217 (6) C7 0.70707(13) 0.3786 (4) 0.99784 (18) 0.0223 (6) C8 0.76843 (12) 0.5742 (4) 1.01542 (18) 0.0196 (6) C9 0.52835 (14) 0.2595(4)0.6353(2)0.0267(7)H3A 0.97340 1.54120 0.85420 0.0320* H₃B 0.91050 1.42720 0.73820 0.0320* H4 0.70950 0.79660 0.72590 0.0210* H6 0.60400 0.20200 0.86940 0.0260* H7 0.70660 0.27310 1.06610 0.0270* H8 0.60070 1.09470 0.80890 0.0230* H9A 0.55920 0.09510 0.65060 0.0400* H9B 0.49150 0.26560 0.54900 0.0400* H9C 0.49360 0.27480 0.69090 0.0400*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0222 (7)	0.0219 (8)	0.0132 (7)	-0.0060 (6)	0.0029 (5)	-0.0003 (5)
02	0.0206 (8)	0.0251 (8)	0.0201 (7)	-0.0072 (6)	0.0016 (6)	-0.0015 (6)
N1	0.0196 (9)	0.0198 (9)	0.0157 (8)	-0.0016 (7)	0.0045 (7)	0.0003 (6)
N2	0.0197 (9)	0.0217 (9)	0.0149 (8)	-0.0040 (7)	0.0042 (6)	0.0002 (6)
N3	0.0309 (10)	0.0317 (11)	0.0131 (8)	-0.0154 (8)	0.0017 (7)	0.0001 (7)
C1	0.0177 (10)	0.0206 (11)	0.0151 (9)	-0.0029 (8)	0.0030 (7)	-0.0026 (7)
C2	0.0186 (10)	0.0176 (10)	0.0132 (9)	0.0007 (8)	0.0053 (7)	0.0016 (7)

data reports

C3	0.0193 (10)	0.0191 (11)	0.0178 (10)	0.0023 (8)	0.0065 (8)	-0.0003 (7)
C4	0.0199 (10)	0.0183 (11)	0.0161 (9)	-0.0009 (8)	0.0069 (8)	0.0016 (8)
C5	0.0192 (10)	0.0197 (11)	0.0176 (10)	0.0028 (8)	0.0050 (8)	-0.0025 (8)
C6	0.0208 (10)	0.0202 (11)	0.0254 (11)	-0.0012 (8)	0.0089 (8)	-0.0004 (8)
C7	0.0261 (11)	0.0212 (11)	0.0215 (10)	0.0033 (8)	0.0103 (8)	0.0047 (8)
C8	0.0199 (10)	0.0216 (11)	0.0172 (10)	0.0031 (8)	0.0058 (8)	0.0007 (8)
C9	0.0256 (11)	0.0225 (12)	0.0288 (11)	-0.0055 (9)	0.0039 (9)	-0.0034 (8)

Geometric parameters (Å, °)

01—C1	1.369 (2)	C3—C4	1.391 (3)
O1—C2	1.382 (2)	C4—C5	1.391 (3)
O2—C5	1.376 (2)	C5—C6	1.395 (3)
O2—C9	1.431 (3)	C6—C7	1.399 (3)
N1—N2	1.401 (2)	C7—C8	1.375 (3)
N1—C2	1.285 (2)	C4—H4	0.9300
N2—C1	1.308 (2)	С6—Н6	0.9300
N3—C1	1.320 (3)	С7—Н7	0.9300
N3—H3A	0.8600	C8—H8	0.9300
N3—H3B	0.8600	С9—Н9А	0.9600
C2—C3	1.456 (3)	С9—Н9В	0.9600
C3—C8	1.405 (3)	С9—Н9С	0.9600
C1 O1 C2	102 42 (14)	02 C5 C6	124 18 (18)
$C_1 = 0_1 = 0_2$	102.42(14) 117.05(16)	$C_2 - C_3 - C_0$	124.10(10) 118.50(10)
$C_3 = C_2 = C_9$	117.03(10) 107.48(15)	C_{3}	110.39(19) 121.50(18)
$N_2 - N_1 - C_2$ $N_1 - N_2 - C_1$	107.46 (15)	C_{0}	121.39(18) 110.32(18)
$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$	105.80 (15)	$C_3 = C_4 = H_4$	119.52 (18)
$\Pi SA - \Pi S - \Pi SB$ C1 N2 H2A	120.00	C_{3} C_{4} H_{4}	120.00
C1 N2 H2P	120.00	$C_{5} - C_{4} - H_{4}$	120.00
C1 = N3 = H3B	120.00 112.28(17)	С3—С6—Н6	121.00
$N_2 = C_1 = N_2$	112.20(17) 128.53(10)	C6 C7 H7	121.00
$N_2 - C_1 - N_3$	120.33(19) 110.18(16)	C_{0} C_{1} H_{1}	119.00
OI - CI - NS	119.10(10) 129.29(17)	C_{0} C_{0} H_{0}	120.00
N1 - C2 - C3	120.30(17) 110.62(16)	C_{3}	120.00
01 - 02 - 03	119.05(10) 111.06(17)	$C_{}C_{0}$	120.00
$C_2 = C_2 = C_4$	111.90(17) 121.97(17)	$O_2 = C_2 = H_1 P_A$	109.00
$C_2 = C_3 = C_4$	121.87(17) 118.20(17)	$O_2 = C_2 = H_2 O_2$	109.00
$C_2 - C_3 - C_8$	110.20(17) 110.03(18)		109.00
$C_4 = C_5 = C_8$	119.93 (18)	$H_{0A} = C_{0} = H_{0C}$	109.00
$C_{3} - C_{4} - C_{5}$	120.00(18) 120.57(18)	HOR CO HOC	109.00
02-05-04	120.37(18) 115.25(17)	119 D —C7—119C	109.00
02-03-04	115.25 (17)		
C2-01-C1-N2	-0.4 (2)	N1—C2—C3—C4	170.2 (2)
C2-01-C1-N3	-179.58 (19)	N1—C2—C3—C8	-9.3 (3)
C1-01-C2-N1	0.5 (2)	C2—C3—C4—C5	-179.06 (19)
C1—O1—C2—C3	178.77 (18)	C8—C3—C4—C5	0.4 (3)
C9—O2—C5—C4	175.65 (18)	C2—C3—C8—C7	179.34 (19)

C9—O2—C5—C6	-5.1 (3)	C4—C3—C8—C7	-0.1 (3)
C2-N1-N2-C1	0.2 (2)	C3—C4—C5—O2	178.97 (18)
N2—N1—C2—O1	-0.5 (2)	C3—C4—C5—C6	-0.3 (3)
N2—N1—C2—C3	-178.51 (19)	O2—C5—C6—C7	-179.19 (19)
N1—N2—C1—O1	0.2 (2)	C4—C5—C6—C7	0.1 (3)
N1—N2—C1—N3	179.2 (2)	C5—C6—C7—C8	0.2 (3)
O1—C2—C3—C4	-7.8 (3)	C6—C7—C8—C3	-0.2 (3)
O1—C2—C3—C8	172.78 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3A···N2 ⁱ	0.86	2.09	2.924 (2)	163
N3—H3 B ···N1 ⁱⁱ	0.86	2.13	2.969 (2)	164

Symmetry codes: (i) -x+2, -y+3, -z+2; (ii) x, -y+5/2, z-1/2.