JSS College of Arts, Commerce and Science (Autonomous)

B N Road, Mysuru 570025

Bachelor of Science

Computer Science

First and Second Semester Syllabus (SEP) 2024

University of Mysore

Curriculum

Program: B.Sc. Subject: Computer Science

							Ma	arks
Semester	Course Code	Theory/ Practical	Credits	L-T-P	No. of Hours	Course Title	SEE	CIE
T	GCS101	Theory	03	3-0-0	03	Computer Concepts and Problem-Solving using C++	80	20
I	GCS102	Practical	02	0-0-2	04	Computer Basics and Programming in C++	40	10
П	GCS201	Theory	03	3-0-0	03	Data Structures	80	20
	GCS202	Practical	02	0-0-2	04	Data Structures using C++	40	10

	Semesterri		
Course Code: GCS101	Course Title: Computer Concepts and Problem solving using C++		
Course Credits: 03 (3-0-0)	Hours/Week: 03		
Total Contact Hours: 44	Formative Assessment Marks: 20		
Exam Marks: 80	Exam Duration: 03		

Semester: I

Course Outcomes (COs):

On successful completion of this course, students will be able to:

- 1. Understand the basics of computer.
- 2. Understand problem-solving strategies and techniques.
- **3.** Describe the Object-Oriented Programming principles and concepts.
- 4. Understand of the syntax and semantics of the C++.

Course Contents

Unit-1	
Introduction To Computers: Definition And Characteristics Of Computers, Brief	11
History Of Computers, Classification Of Computers Based On Size And Processing	Hours
Computer Architecture: CPU, ALU, Control Unit, Registers, Cache Memory, RAM,	
ROM, Input/Output Components, Buses, Ports. Hardware And Software: System	
Software [Operating System, Interpreters], Application Software. Languages Of Computer, ASCII And EBCDIC, Computer Threats And Safety Measurements.	
Unit-2	
Problem Solving Techniques: Problem, Definition, Analysis, Design Tools 11	
[Algorithm & Flow Chart], Coding, Testing, Maintenance. Basics Of Algorithm Hours	
Analysis: Time Complexity, Space Complexity, Asymptotic Notations.	
Basic Programming Concepts: Tokens Of Programming Language, Identifier,	
Concepts. Comparison Of POP And OOP.	
Unit-3	
Introduction To C++: Overview Of Programming Languages, History and Features	11
of C++, Structure of C++ Program, Data Types In C++. Control Structures: Decision	Hours
Making: II, II-Else, Nested II, Switch Statement. Looping: While, Do-While, For.	
onconditional statements: Dreak And Continue Statements.	
Access Specifiers: Public, Private, Protected. Pointers In C++.	

Unit-4		
Objects, Classes: Base And Derived Classes, Data Encapsulation, Data Abstraction,	11	
Friend Function, Inheritance: Single, Multiple, Multilevel, Hierarchical.		
Polymorphism: Function Overloading, Operator Overloading, Virtual Functions.		
Constructors And Destructors: Exception Handling.		

Reference:

- 1. "Programming: Principles and Practice Using C++" by Bjarne Stroustrup.
- 2. "C++ Primer" by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo.
- 3. "Object-Oriented Programming with C++" by E. Balagurusamy
- 4. "Problem Solving and Object-Oriented Programming with C++" by Tanenbaum and Mukherjee:

Course Code: GCS102	Course Title: Computer Basics and Programming in
	L++
Course Credits: 02 (0-0-2)	Hours/Week: 04
Total Contact Hours: 60	Formative Assessment Marks: 10
Exam Marks: 40	Exam Duration: 03

Course Outcomes (COs):

On successful completion of this course, students will be able to:

- 1. Illustrate the hardware components of Computer.
- 2. Use Open-Source Office tools.
- 3. Demonstrate simple programming skills through C++ programming language.

Laboratory Program List

PART -A

- 1. Demonstration of Desktop computer Hardware components.
- 2. Demonstration of Word Processor software [Open-Office].
- 3. Demonstration of Spreadsheet software [Open-Office].
- 4. Demonstration of Presentation software [Open-Office].
- 5. C++ program to print user name.
- 6. C++ program to swap 2 numbers.
- 7. C++ Program to Find Largest Among 3 Numbers
- 8. C++ program to perform arithmetic operations.

PART-B

- 1. C++ Program to Print Multiplication Table of a Number
- 2. C++ Program to Reverse a Number
- C++ Program to Check Whether a Number is a Palindrome or Not 4.
 C++ Program to Create a Class and Object
- 5. C++ program for single inheritance.
- 6. C++ program to demonstrate multi-level inheritance.
- 7. C++ program to demonstrate operator overloading.
- 8. C++ Program by using Pointers

Practical Evaluation [50 Marks]

- Internal assessment: C1= 05 Marks, C2= 05 Marks [Total = 10 Marks] Semester End Examination[practical]
- Writing: One program from both Part A and Part B (10 Marks each): 10 + 10 = 20 Marks
- Debug and Execution: (05 Marks each) 05 + 05 = 10 Marks
- Viva: 05 Marks
- Record: 05 Marks

Semester: II

Course Code: GCS201	Course Title: Data Structures		
Course Credits: 03 (3-0-0)	Hours/Week: 03		
Total Contact Hours: 44	Formative Assessment Marks: 20		
Exam Marks: 80	Exam Duration: 03		

Course Outcomes (COs):

On successful completion of this course, students will be able to:

- 1. Understand the basics of Data Structures.
- 2. Identify the appropriate data structures and algorithms for solving real world problems.
- 3. Understand the practical applications of Tree and Graph.

Unit-1		
Introduction: Data Structure Definition, Basic Terminology and Concepts,	11	
Importance of Data Structures In Programming. Classification of Data Structures.		
Primitive Data Structures, Non-Primitive Data Structures.		
Arrays: Declaration, Initialization, Accessing Elements, Multidimensional Arrays.		
C++ Strings, String Handling Functions, Applications of Arrays and Strings. Stack:		
Definition, Memory Representation, Algorithms for Stack Operations (Push, Pop),		
Applications of Stack.		
Unit-2		
Queue: Definition Memory Representation Linear Queue Circular Queue	11	
Enqueue Dequeue Applications Of Queue	Houma	
Enqueue, Dequeue. Applications of Queue.		
Linked Lists: Definition, Types.		
Singly Linked List: Implementation, Insertion [At the Beginning], Deletion [At the End].		
Doubly Linked List: Memory Representation of Singly Linked List and Doubly Linked Lists. Applications of Linked List.		
Unit-3		

Tree: Definition, Memory Representation Using Array and Linked List.	11	
Binary Tree: Definition, Traversal Algorithms [Pre-Order, In-Order, Post-Order],		
Construction of Tree from In-Order and Pre-Order, In-Order and Post-Order. Binary		
Search Trees: Insertion of a Node, Deletion of A Node.		
Advanced Tree Structures AVL And B-Trees: Definition and Applications.		
Unit-4		
Graph: Definition, Memory Representation of Graph. Adjacency Matrix, Adjacency	11	
List. Graph Traversal Algorithms: Breadth-First Search (BFS), Depth-First Search (DFS).	Hours	
Sorting Techniques: Bubble Sort, Selection Sort [Algorithm, Time & Space Complexity].		
Searching Techniques: Linear And Binary Search Sort [Algorithm, Time & Space Complexity].		
Heap: Heap Operations and Applications.		

Reference Books:

- 1. Data Structures Through C++ (4th Edition) Yashvant Kanetkar.
- 2. Data Structures and Algorithm Analysis in C++" by Mark Allen Weiss.
- 3. Data structure and Algorithms using C++ by Sachi Nandan Mohanty, Pabitra Kumar Tripathy.
- 4. Data Structures and Algorithms in C++, Second Edition by Adam Drozdek.

Course Code: GCS202	Course Title: Data Structures using C++
Course Credits: 02 (0-0-2)	Hours/Week: 04
Total Contact Hours: 60	Formative Assessment Marks: 10
Exam Marks: 40	Exam Duration: 03

Course Outcomes (COs):

On successful completion of this course, students will be able to:

- 1. Implement data structures using C++.
- 2. Demonstrate searching and sorting techniques using ++.
- 3. Demonstrate simple programming skills through C++ programming language.

Laboratory Program List Part A:

- 1. C++ program to find GCD of two numbers.
- 2. C++ program to implement Tower of Hanoi.
- 3. C++ program to print Fibonacci series.
- 4. C++ program to find largest and smallest element in an array.
- 5. C++ program to perform stack operations.
- 6. C++ program to perform Linear queue operations
- 7. C++ program to insert a node at the beginning of a singly linked list.
- 8. C++ program to delete a node at the end of a singly linked list.

Part B:

- 1. C++ program to construct a binary search tree
- 2. C++ program for Binary Tree traversal.
- 3. C++ program to implement DFS
- 4. C++ program to implement BFS
- 5. C++ Program to Sort an Array (Selection Sort)
- 6. C++ Program to Sort an Array (Bubble Sort)
- 7. C++ Program to perform Linear Search of an Element in an Array.
- 8. C++ Program to perform Binary Search of an Element in an Array.

Practical Evaluation [50 Marks]

- Internal assessment: C1= 05 Marks, C2 =05 Marks [Total = 10 Marks] Semester End practical Examination C3=40 marks
- Writing: One program from both Part A and Part B (10 Marks each): 10 + 10 = 20 Marks
- Debug and Execution: (05 Marks each) 05 + 05 = 10 Marks
- Viva: 05 Marks
- Record: 05 Marks
- Viva: 05

CIE, SEE and QP Pattern for Theory Courses:

- Total Lecture hours per paper: 44
- No. of Units 4 (11 Hours Each)
- Internal Assessment C1 = 10 Marks, C2 = 10 Marks
- Semester End Theory Exam **C3 = 80 Marks**

Question paper pattern:

Instructions: Answer Part-A and Part-B:

Part-A

Answer any 10 out of 12 Questions (3 Questions drawn from each unit).

Each question carries 2 Marks. (10 X 2 =20) Q. No. 1 to Q. No. 12.

Part-B

Answer the following Questions.

- 1. a) OR b) 2. a) OR b)
- 3. a) OR b)
- 4. a)
 - b)

OR

Each question carries 15 Marks. (4 X 15 =60) (Each question with internal choice and with maximum of 3 sub questions)